题目内容

1.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右焦点为F,过点F的直线交椭圆于A,B两点,当A为下顶点时,|AF|=2.
(1)求椭圆E的方程;
(2)直线x=4与x轴交于点G,过点A作直线x=4的垂线且垂足为C,连接BC与x轴交于点D,求四边形OADB面积的最大值.

分析 (1)由题意知a=2,c=1,b=$\sqrt{3}$;从而写出椭圆E的方程;
(2)由题意作图,设直线AB的方程为x-1=my,从而联立方程化简可得(4+3m2)y2+6my-9=0,从而可证明DF=$\frac{3}{2}$,而且化SOADB=SOAD+SODB=$\frac{1}{2}$OD|y1-y2|=$\frac{5}{4}$|y1-y2|=$\frac{5}{4}$$\frac{12\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$,从而求最大值.

解答 解:(1)∵当A为下顶点时,
|AF|=2,
∴a=2,又∵e=$\frac{c}{a}$=$\frac{1}{2}$,
∴c=1,b=$\sqrt{3}$;
故椭圆E的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由题意作图象如右图,
设直线AB的方程为x-1=my,
联立方程可得,
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my+1}\end{array}\right.$,
化简可得,
(4+3m2)y2+6my-9=0,
△=(6m)2+4×(4+3m2)×9=144(m2+1),
设A(x1,y1),B(x2,y2);
则y1=$\frac{-6m-12\sqrt{{m}^{2}+1}}{2(4+3{m}^{2})}$=-$\frac{3m+6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$,
y2=$\frac{-3m+6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$,
x1=-m$\frac{3m+6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$+1=$\frac{4-6m\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$,
由三角形相似可得,
$\frac{BF}{AB}$=$\frac{DF}{AC}$,
即$\frac{\frac{-3m+6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}}{\frac{-3m+6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}-\frac{-3m-6\sqrt{{m}^{2}+1}}{4+3{m}^{2}}}$=$\frac{DF}{4-\frac{4-6m\sqrt{{m}^{2}+1}}{4+3{m}^{2}}}$
故DF=$\frac{(2\sqrt{{m}^{2}+1}-m)(12+12{m}^{2}+6m\sqrt{{m}^{2}+1})}{4(4+3{m}^{2})\sqrt{{m}^{2}+1}}$=$\frac{3}{2}$,
故D($\frac{5}{2}$,0);
故OD=$\frac{5}{2}$;
故SOADB=SOAD+SODB=$\frac{1}{2}$OD|y1-y2|
=$\frac{5}{4}$|y1-y2|=$\frac{5}{4}$$\frac{12\sqrt{{m}^{2}+1}}{4+3{m}^{2}}$
=15•$\frac{1}{\frac{1}{\sqrt{{m}^{2}+1}}+3\sqrt{{m}^{2}+1}}$,
∵$\sqrt{{m}^{2}+1}$≥1,
∴$\frac{1}{\sqrt{{m}^{2}+1}}$+3$\sqrt{{m}^{2}+1}$≥4,
∴15•$\frac{1}{\frac{1}{\sqrt{{m}^{2}+1}}+3\sqrt{{m}^{2}+1}}$≤$\frac{15}{4}$;
故四边形OADB面积的最大值为$\frac{15}{4}$.

点评 本题考查了圆锥曲线与直线的位置关系的应用及数形结合的思想方法应用,同时考查了整体思想与转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网