ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÍÖÔ²${C_1}£º\frac{x^2}{2}+{y^2}=1$
£¨1£©ÇóÖ¤ÍÖÔ²C1ÔÚÆäÉÏÒ»µãA£¨x0£¬y0£©£¬A´¦µÄÇÐÏß·½³ÌΪx0x+2y0y-2=0£®
£¨2£©Èçͼ£¬¹ýÍÖÔ²C2£º$\frac{x^2}{8}+\frac{y^2}{2}=1$ÉÏÈÎÒâÒ»µãP×÷C1µÄÁ½ÌõÇÐÏßPMºÍPN£¬Çеã·Ö±ðΪM£¬N£¬µ±µãPÔÚÍÖÔ²C2ÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚ¶¨Ô²ºãÓëÖ±ÏßMNÏàÇУ¿Èô´æÔÚ£¬Çó³öÔ²µÄ·½³Ì£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉÅбðʽµÈÓÚ0¿ÉµÃA´¦µÄÇÐÏß·½³ÌΪx0x+2y0y-2=0£»
£¨2£©ÀûÓÃͬһ·¨Çó³ö¹ýMNµÄ·½³ÌΪmx+2ny-2=0£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öOµ½MNËùÔÚÖ±ÏߵľàÀ룬ÓɾàÀëΪ¶¨Öµ¿ÉµÃ´æÔÚ¶¨Ô²ºãÓëÖ±ÏßMNÏàÇУ®

½â´ð £¨1£©Ö¤Ã÷£ºÁªÁ¢$\left\{\begin{array}{l}{{x}_{0}x+2{y}_{0}y-2=0}\\{{x}^{2}+2{y}^{2}-2=0}\end{array}\right.$£¬µÃ$£¨{{x}_{0}}^{2}+2{{y}_{0}}^{2}£©{x}^{2}-4{x}_{0}x+4-4{{y}_{0}}^{2}=0$£®
¡ß¡÷=$16{{x}_{0}}^{2}-4£¨{{x}_{0}}^{2}+2{{y}_{0}}^{2}£©£¨4-4{{y}_{0}}^{2}£©$=$16£¨{{x}_{0}}^{2}{{y}_{0}}^{2}-2{{y}_{0}}^{2}+2{{y}_{0}}^{4}£©$
=$16[£¨{{x}_{0}}^{2}-2£©{{y}_{0}}^{2}+2{{y}_{0}}^{4}]=16£¨-2{{y}_{0}}^{4}+2{{y}_{0}}^{4}£©=0$£®
¡àx0x+2y0y-2=0ΪÍÖÔ²${C_1}£º\frac{x^2}{2}+{y^2}=1$ÔÚµãA£¨x0£¬y0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©½â£ºÉèP£¨m£¬n£©£¬ÔòÍÖÔ²C1ÔÚµãM£¨x3£¬y3£©´¦µÄÇÐÏß·½³ÌΪx3x+2y3y-2=0£®
ÓÖPM¹ýµãP£¨m£¬n£©£¬¡àx3m+2y3n-2=0£®
ͬÀíµãN£¨x4£¬y4£©Ò²Âú×ãx4m+2y4n-2=0£®
¡àM£¬N¶¼ÔÚÖ±Ïßxm+2yn-2=0ÉÏ£¬
¼´Ö±ÏßMNµÄ·½³ÌΪmx+2ny-2=0£®
¡àÔ­µã0µ½Ö±ÏßMNµÄ¾àÀëd=$\frac{2}{\sqrt{{m}^{2}+4{n}^{2}}}$£®
¡ß$\frac{m^2}{8}+\frac{n^2}{2}=1$£¬¡àm2+4n2=8£®
¡à$d=\frac{2}{{\sqrt{8}}}=\frac{1}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$£®
¼´Ö±ÏßMNʼÖÕÓëÔ²${x^2}+{y^2}=\frac{1}{2}$ÏàÇУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓá°Í¬Ò»·¨¡±ÇóÖ±Ïߵķ½³Ì£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø