题目内容

16.已知点P在抛物线y2=4x上,则点P到直线l1:4x-3y+11=0的距离和到l2:x=-1的距离之和的最小值为(  )
A.$\frac{37}{16}$B.3C.2D.$\frac{11}{5}$

分析 如图所示,过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.设抛物线的焦点为F,由抛物线的定义可得|PN|=|PF|,求|PM|+|PN|转化为求|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.利用点到直线的距离公式即可得出.

解答 解:如图所示,
过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.
设抛物线的焦点为F(1,0),由抛物线的定义可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,当三点M,P,F共线时,
|PM|+|PF|取得最小值.
其最小值为点F到直线l1的距离,∴|FM|=$\frac{|4-0+11|}{\sqrt{16+9}}$=3.
故选B.

点评 本题考查了抛物线的定义及其性质、三点共线、点到直线的距离公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网