题目内容
8.已知cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),求$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$的值.分析 化简cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),得出sinα=2cosα,再化简$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$并求值.
解答 解:∵cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),
∴-sinα=-2sin($\frac{π}{2}$-α)=-2cosα,
∴sinα=2cosα,且cosα≠0;
∴$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$=$\frac{-sinα-cosα}{5sinα-3cosα}$
=$\frac{-2cosα-cosα}{10cosα-3cosα}$
=-$\frac{3}{7}$.
点评 本题考查了求三角函数的化简与求值问题,也考查了计算能力的应用问题,是基础题目.
练习册系列答案
相关题目
19.已知Sn是等差数列{an}的前n项和,若a7=9a3,则$\frac{{S}_{9}}{{S}_{5}}$=( )
| A. | 9 | B. | 5 | C. | $\frac{18}{5}$ | D. | $\frac{9}{25}$ |
13.已知f(x)=ax5+bx3+$\frac{c}{x}$-8,且f(2)=5,则f(-2)的值为( )
| A. | -5 | B. | 21 | C. | 13 | D. | -21 |