题目内容
设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若Q={x|1<x<2},P={x|1<x<3},那么P-Q等于( )
| A、{x|0<x<1} |
| B、{x|0<x≤1} |
| C、{x|1≤x<2} |
| D、{x|2≤x<3} |
考点:交、并、补集的混合运算
专题:集合
分析:根据题中的新定义求出P-Q即可.
解答:
解:∵Q={x|1<x<2},P={x|1<x<3},
∴P-Q={x|x∈P,且x∉Q}={x|2≤x<3},
故选:D.
∴P-Q={x|x∈P,且x∉Q}={x|2≤x<3},
故选:D.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
已知函数f(x)=
,若函数y=f2(x)-2bf(x)+b-
有6个零点,则b的取值范围是( )
|
| 2 |
| 9 |
A、[
| ||||||||
B、(
| ||||||||
C、(0,
| ||||||||
D、(
|
若y=-x3+ax在(-1,1)内单调递减,则a的取值范围为( )
| A、(-∞,0] |
| B、(-∞,3) |
| C、(3,+∞) |
| D、[3,+∞) |
已知A(1,3)和直线l:2x+3y-6=0,点B在l上运动,点P是有向线段AB上的分点,且
=
,则点P的轨迹方程是( )
| AP |
| 1 |
| 2 |
| PB |
| A、6x-9y-28=0 |
| B、6x-9y+28=0 |
| C、6x+9y-28=0 |
| D、6x+9y+28=0 |
等差数列{an}中,a1+a2+a3=12,a3+a4+a5=18,则a7+a8+a9=( )
| A、-12 | B、6 | C、30 | D、24 |
已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5,7},则A∩(∁UB)等于( )
| A、{2,4,6} |
| B、{1,3,5} |
| C、{2,4,5} |
| D、{2,5} |