题目内容

2.高纯MnCO3是广泛用于电子行业的强磁性材料.MnCO3为白色粉末,不溶于水和乙醇,在潮湿环境下易被氧化,温度高于100℃开始分解.
Ⅰ.实验室以MnO2为原料制备MnCO3
(1)制备MnSO4溶液:
①主要反应装置如图1,缓缓通入经N2稀释的SO2气体,发生反应H2SO3+MnO2$\frac{\underline{\;电炉\;}}{\;}$MnSO4+H2O.下列措施中,目的是加快化学反应速率的是AB(填标号).
A.MnO2加入前先研磨       B.搅拌      C.提高混合气中N2比例
②已知实验室制取SO2的原理是Na2SO3+2H2SO4(浓) $\frac{\underline{\;电电炉\;}}{\;}$ 2NaHSO4+SO2↑+H2O.选择如图2所示部分装置与图装1置相连制备MnSO4溶液,应选择的装置有abef(填标号).

③若用空气代替N2进行实验,缺点是空气中的O2能氧化H2SO3,使SO2利用率下降.(酸性环境下Mn2+不易被氧化)
(2)制备MnCO3固体:
实验步骤:①向MnSO4溶液中边搅拌边加入饱和NH4HCO3溶液生成MnCO3沉淀,反应结束后过滤;②…;③在70-80℃下烘干得到纯净干燥的MnCO3固体.
步骤②需要用到的试剂有乙醇.
Ⅱ.设计实验方案
(3)利用沉淀转化的方法证明KSP(MnCO3)<KSP(NiCO3):向少量NiSO4溶液中滴加几滴Na2CO3溶液,生成浅绿色沉淀,再滴加足量MnSO4溶液,沉淀变成白色.(已知NiCO3为难溶于水的浅绿色固体)
(4)证明H2SO4的第二步电离不完全:用pH计测量Na2SO4溶液的pH大于7.[查阅资料表明K2(H2SO4)=1.1×10-2].

分析 (1)①增大接触面积,反应速率加快,提高混合其中N2比例,二氧化硫的浓度减小;
②b装置制备二氧化硫,氮气与二氧化硫通过e装置混合,在图1装置中反应生成MnSO4,利用f进行尾气处理,防止污染空气;
③氧气能与亚硫酸反应生成硫酸;
(2)步骤②为洗涤杂质,防止氧化与溶解损失;
(3)利用MnCO3转化为NiCO3浅绿色固体设计;
(4)测定0.1mol/L的硫酸氢钠溶液的pH或Na2SO4溶液pH.

解答 解:(1)①MnO2研磨、反应时搅拌均可以增大接触面积,加快反应速率,提高混合其中N2比例,二氧化硫的浓度减小,反应速率减小,
故选:AB;
②反应不需要加热制备二氧化硫,b装置制备二氧化硫,氮气与二氧化硫通过e装置混合,在图1装置中反应生成MnSO4,利用f进行尾气处理,防止尾气中二氧化硫污染空气,
故选:abef;
③制备原理为:H2SO3+MnO2═MnSO4+H2O,若用空气代替N2进行实验,氧气能与亚硫酸反应生成硫酸,二氧化硫利用率降低,
故答案为:空气中的O2能氧化H2SO3,使SO2利用率下降;
(2)步骤②为洗涤杂质,MnCO3为白色粉末,不溶于水和乙醇,在潮湿环境下易被氧化,应用乙醇洗涤,可以防止被氧化,因溶解导致的损失,
故答案为:乙醇;
(3)先向少量NiSO4溶液中滴加几滴Na2CO3溶液,生成浅绿色沉淀,再滴加足量MnSO4溶液,沉淀变成白色,可证明KSP(MnCO3)<KSP(NiCO3),
故答案为:向少量NiSO4溶液中滴加几滴Na2CO3溶液,生成浅绿色沉淀,再滴加足量MnSO4溶液,沉淀变成白色;
(4)配制0.1mol/L NaHSO4溶液,测定溶液pH>1,则说明H2SO4的第二步电离不完全,或用pH计测量Na2SO4溶液的pH大于7,也可证明H2SO4的第二步电离不完全,
故答案为:配制0.1mol/L NaHSO4溶液,测定溶液pH>1,说明H2SO4的第二步电离不完全(或用pH计测量Na2SO4溶液的pH大于7).

点评 本题通过制备方案的设计,考查了反应速率影响因素、对原理与装置的分析评价、物质的分离提纯、实验方案设计等知识,题目难度中等,注意对题目信息的应用,是对学生综合能力的考查,需要学生具备扎实的基础,试题培养了学生的化学实验能力.

练习册系列答案
相关题目
17.E、G、M、Q、T是五种原子序数依次增大的前四周期元素.E、G、M是位于p区的同一周期的元素,M的价层电子排布为ns2np2n,E与M原子核外的未成对电子数相等;QM2与GM2-具有相等的价电子总数;T为过渡元素,其原子核外没有未成对电子.请回答下列问题:
(1)T元素原子的价电子排布式是3d104s2
(2)E、G、M三种元素的第一电离能由大到小的顺序为N>O>C(用元素符号表示),其原因为同周期随原子序数增大,第一电离能呈增大趋势,但N原子2P能级为半满稳定状态,能量较低,第一电离能大于氧的.
(3)E、G、M的最简单氢化物中,键角由大到小的顺序为CH4>NH3>H2O(用分子式表示),
其中G的最简单氢化物的分子立体构型名称为三角锥形,M的最简单氢化物的分子中中心原子的杂化类型为sp3.M和Q的最简单氢化物的沸点大小顺序为H2O>H2S(写化学式).
(4)EM、CM+、G2互为等电子体,EM的结构式为(若有配位键,请用“→”表示).E、M电负性相差1.0,由此可以判断EM应该为极性较强的分子,但实际上EM分子的极性极弱,请解释其原因:从电负性分析,CO中的共用电子对偏向氧原子,但分子中形成配位键的电子对是由氧原子单方面提供的,抵消了共用电子对偏向O而产生的极性

(5)TQ在荧光体、光导体材料、涂料、颜料等行业中应用广泛.立方TQ晶体结构如右图所示,该晶体的密度为pg•cm-3.如果TQ的摩尔质量为Mg.mol-1,阿伏加德罗常数为NAmol-1,则a、b之间的距离为$\frac{\sqrt{3}}{4}$×$\root{3}{\frac{4M}{ρ{N}_{A}}}$cm.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网