题目内容

3.常见元素A、B、C、D、E的原子序数依次增大,其相关信息如表:
元素相关信息
A该元素的一种核素无中子
B基态原子核外只有三个能级,且各能级电子数相等
C基态原子最外层电子数是其内层电子总数的2.5倍
D一个D-离子含18个电子
E+3价离子3d能级为半充满
(1)E位于元素周期表的位置是第4周期第VIII族.
(2)C元素基态原子的电子排布图
(3)C单质分子的电子式为,C的氢化物在同族元素中氢化物的沸点出现反常,其原因是NH3分子间易形成氢键.
(4)D的氢化物与其最高价氧化物的水化物的钾盐共热能发生反应,生成一种气体单质,反应的化学方程式为8HCl+KClO4$\frac{\underline{\;\;△\;\;}}{\;}$KCl+4Cl2↑+4H2O.
(5)由A、B两种元素组成的非极性分子有多种,其中乙是一个含4个原子的分子,乙分子的中心原子的杂化方式为sp杂化.已知13g乙完全燃烧放出的热量为600kj,则乙燃烧热的热化学反应方程式是C2H2(g)+$\frac{5}{2}$O2(g)=2CO2(g)+H2O(l)△H=-1200kJ/mol.

分析 常见元素A、B、C、D、E的原子序数依次增大,A元素的一种核素无中子,则A为H元素;B的基态原子核外只有三个能级,且各能级电子数相等,则B原子核外电子排布为1s22s22p2,则B为C元素;C的基态原子最外层电子数是其内层电子总数的2.5倍,则C原子核外有2个电子层,最外层电子数为5,则C为N元素;D的一个D-离子含18个电子,则D原子核外电子总数=核电荷数=17,为Cl元素;E3+的3d能级为半充满,其基态原子的电子排布式为:1s22s22p63s23p63d64s2或[Ar]3d64s2,为Fe元素,
根据以上分析进行解答.

解答 解:常见元素A、B、C、D、E的原子序数依次增大,A元素的一种核素无中子,则A为H元素;B的基态原子核外只有三个能级,且各能级电子数相等,则B原子核外电子排布为1s22s22p2,则B为C元素;C的基态原子最外层电子数是其内层电子总数的2.5倍,则C原子核外有2个电子层,最外层电子数为5,则C为N元素;D的一个D-离子含18个电子,则D原子核外电子总数=核电荷数=17,为Cl元素;E3+的3d能级为半充满,其基态原子的电子排布式为:1s22s22p63s23p63d64s2或[Ar]3d64s2,为Fe元素,
(1)E为Fe元素,其基态核外电子排布式为:1s22s22p63s23p63d64s2,铁元素位于第4周期第VIII族,故答案为:第4周期第VIII族;
(2)N原子核外有7个电子,分别位于1S、2S、2P轨道,其轨道表示式为,故答案为:
(3)氮气的电子式为,由于氨分子间存在氢键,故使其沸点出现反常,故答案为:;NH3分子间易形成氢键;
(4)D的氢化物为HCl,其最高价氧化物的水化物的钾盐为KClO4,共热能发生反应,生成一种气体单质,应为Cl2,反应的方程式为:8HCl+KClO4$\frac{\underline{\;\;△\;\;}}{\;}$KCl+4Cl2↑+4H2O,
故答案为:8HCl+KClO4$\frac{\underline{\;\;△\;\;}}{\;}$KCl+4Cl2↑+4H2O;
(5)由A、B两种元素组成的含4个原子的非极性分子为乙炔,直线型sp杂化;13g乙炔的燃烧完全燃烧放出的热量为600kj,所以乙炔的燃烧热为1200kJ∕mol,则乙燃烧热的热化学反应方程式为C2H2(g)+$\frac{5}{2}$O2(g)=2CO2(g)+H2O(l)△H=-1200 kJ/mol,故答案为:sp杂化;C2H2(g)+$\frac{5}{2}$O2(g)=2CO2(g)+H2O(l)△H=-1200 kJ/mol.

点评 本题考查结构性质位置关系应用,题目难度中等,涉及元素在周期表中的位置、电子式等知识,注意掌握原子结构与元素周期表、元素周期律的关系.

练习册系列答案
相关题目
13.已知:将KI、盐酸、试剂X和淀粉四种溶液混合,无反应发生.若再加入双氧水,将发生反应:H2O2+2H++2I-→2H2O+I2,且生成的I2立即与试剂X反应而被消耗.一段时间后,试剂X将被反应生成的I2完全消耗.由于溶液中的I-继续被H2O2氧化,生成的I2与淀粉作用,溶液立即变蓝.因此,根据试剂X的量、滴入双氧水至溶液变蓝所需的时间,即可推算反应H2O2+2H++2I-→2H2O+I2的反应速率.
下表为某同学依据上述原理设计的实验及实验记录(各实验均在室温条件下进行):
编号往烧杯中加入的试剂及其用量(mL)催化剂开始变蓝时间(min)
0.1 mol•Lˉ1
KI溶液
H2O0.01 mol•Lˉ1
X 溶液
0.1 mol•Lˉ1
双氧水
1 mol•Lˉ1
稀盐酸
120.010.010.020.020.01.4
220.0m10.010.0n2.8
310.020.010.020.020.02.8
420.010.010.020.020.05滴Fe2(SO430.6
(1)已知:实验1、2的目的是探究H2O2浓度对H2O2+2H++2I-→2H2O+I2反应速率的影响.实验2中m=20.0,n=20.0.
(2)已知,I2与X反应时,两者物质的量之比为1:2.按面表格中的X和KI的加入量,加入V(H2O2)>0.5mL,才确保看到蓝色.
(3)实验1,浓度c(X)~t的变化曲线如图,若保持其它条件不变,请在答题卡坐标图中,分别画出实验3、实验4,c(X)~t的变化曲线图(进行相应的标注).
(4)实验3表明:硫酸铁能提高反应速率.催化剂能加快反应速率是因为催化剂降低(填“提高”或“降低”)了反应活化能.
(5)环境友好型铝-碘电池已研制成功,已知电池总反应为:2Al(s)+3I2(s)$?_{充电}^{放电}$2AlI3(s).含I-传导有机晶体合成物作为电解质,该电池负极的电极反应为:Al-3e-+3I-=AlI3,充电时Al连接电源的负极.
13.汽车尾气中的CO、NOX是大气的主要污染物,人们尝试使用稀土制成的催化剂将CO、NOx、碳氢化合物转化成无毒物质,从而减少汽车尾气污染.
(1)已知:N2(g)+O2(g)=2NO(g)△H=+180.5kJ/mol
2C(s)+O2(g)=2CO(g)△H=-221.0kJ/mol
C(s)+O2(g)=CO2(g)△H=-393.5kJ/mol
试写出NO与CO催化转化成N2和CO2的热化学方程式2NO(g)+2CO(g)=N2(g)+2CO2(g)△H=-746.5kJ•mol-1
(2)某研究性学习小组在技术人员的指导下,在某温度时,按下列流程探究某种催化剂对上述转化反应的作用,用气体传感器测得不同时间的NO和CO浓度如下:
汽车尾气→尾气分析仪→催化反应器→尾气分析仪
时间/S012345
C(NO)(×10-4mol•L-110.04.052.501.501.001.00
C(CO) (×10-3mol•L-13.603.052.852.752.702.70
请回答下列问题(均不考虑温度变化对催化剂催化效率的影响):
①前2s内的平均反应速率v (N2)=1.875×10-4mol/L.s.
②在该温度下,反应的平衡常数K=5000.(只写出计算结果)
(3)在容积相同的两个密闭容器内(装有等量的某种催化剂),分别充入同量的NOx及C3H6,在不同温度下,同时分别发生以下反应:
18NO(g)+2C3H6(g)?9N2(g)+6CO2(g)+6H2O(g);
18NO2(g)+4C3H6(g)?9N2(g)+12CO2(g)+12H2O(g);
并分别测定各温度下经相同时间时的NOx转化率,绘得图象如图1所示:

①分析图中信息可以得出的结论是
结论一:由NOX转化率数据可判断,相同温度下NO的转化率比NO2低(填“高”或“低”)
结论二:在250°C~450°C时,NOx转化率随温度升高而增大,450°C~600°时NOx转化率随温度升高而减小或两反应为放热反应
②在上述NO2和C3H6的反应中,能提高NO2转化率的措施有BC.(填序号)
A.加入催化剂 B.降低温度     C.分离出H2O(g) D.增大压强
(4)CO分析仪以燃料电池为工作原理,其装置如图2所示.该电池中电解质为氧化钇-氧化钠,其中O2-可以在固体介质NASICON中自由移动.工作时多孔电极a的电极反应方程式为CO+O2--2e-=CO2

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网