题目内容
20.甲醇是有机化工原料和优质燃料,主要应用于精细化工、塑料等领域,也是农药、医药的重要原料之一.回答下列问题:(1)工业上可用CO2 和H2反应合成甲醇.已知25℃、101kPa 下:
H2(g)+$\frac{1}{2}$O2(g)═H2O(g)△H1=-242kJ/mol
CH3OH(g)+$\frac{3}{2}$O2(g)═CO2(g)+2H2O(g)△H2=-676kJ/mol
①写出CO2与H2反应生成CH3OH(g)与H2O(g)的热化学方程式CO2(g)+3H2(g)═CH3OH(g)+H2O(g)△H=-50 kJ/mol.下列表示该反应的能量变化的示意图中正确的是a(填字母代号).
②合成甲醇所需的H2可由下列反应制取:H2O(g)+CO(g)?H2(g)+CO2(g).某温度下该反应的平衡常数K=1.若起始时c(CO)=1mol/L,c(H2O)=2mol/L,则达到平衡时H2O的转化率为33.3%.
(2)CO和H2反应也能合成甲醇:CO(g)+2H2(g)?CH2OH(g)△H=-90.1kJ/mol.在250℃下,将一定量的CO和H2投入10L的恒容密闭容器中,各物质的浓度(mol/L)变化如表所示(前6min没有改变条件):
| 2min | 4min | 6min | 8min | … | |
| CO | 0.07 | 0.06 | 0.06 | 0.05 | … |
| H2 | x | 0.12 | 0.12 | 0.2 | … |
| CH3OH | 0.03 | 0.04 | 0.04 | 0.05 | … |
②若6~8min时只改变了一个条件,则改变的条件是加入1mol氢气,第8min时,该反应是否达到平衡状态?不是(填“是”或“不是”).
(3)甲醇在原电池上的使用,提高了燃料的利用效率,达到节能减排的目的.若用熔融的Na2CO3使作电解质、氧气作助燃剂组成的燃料电池,写出负极的电极反应式:2CH3OH-12e-+6CO32-=8CO2+4H2O.
分析 (1)①已知:Ⅰ.H2(g)+$\frac{1}{2}$O2(g)═H2O(g)△H2=-242kJ/mol-1
Ⅱ.CH2OH(g)+$\frac{3}{2}$O2═CO2(g)+2H2O(g)△H2=-676kJ/mol-1
根据盖斯定律,Ⅰ×3-Ⅱ可得:CO2(g)+3H2(g)=CH3OH(g)+H2O(g);
气态产物能量比液态产物能量高,由①分析可知,合成甲醇的反应为放热反应,反应物的能量高于生成物的能量;
②若起始时c(CO)=1mol•L-1,c(H2O)=2mol•L-1,设H2O的浓度变化量为xmol/L,则:
H2O(g)+CO(g)?H2(g)+CO2(g),
起始量(mol/L):2 1 0 0
变化量(mol/L):x x x x
平衡量(mol/L):2-x 1-x x x
再根据平衡常数列方程计算解答;
(2)①由表中数据可知,从2min到4min,CO的浓度变化量为(0.07-0.06)mol/L=0.01mol/L,根据方程式计算氢气的浓度变化量,2min时氢气浓度=4min时氢气浓度+氢气浓度变化量;
4min与6min时,CO浓度相等,则4min、6min时反应处于平衡状态,平衡常数K=$\frac{c(C{H}_{3}OH)}{c(CO)×{c}^{2}({H}_{2})}$,代入平衡浓度计算;
②对比6min和8min时各物质的浓度可知改变条件后反应反应向正方向进行,按照转化量之比等于计量系数之比△C(CO):△C(H2):△C(CH3OH)=0.01mol/L:0.02mol/L:0.01mol/L,所以8min后三种物质的浓度应为:(0.06-0.01)mol/L、(0.12-0.02)mol/L、(0.04+0.01)mol/L,而8min后氢气的浓度为0.2mol/L,所以多加了0.1mol/L×10=1mol的氢气;
计算浓度商Qc,与平衡常数相比判断第8min时是否达到平衡状态;
(3)用熔融的Na2CO3使作电解质、氧气作助燃剂组成的燃料电池,负极上甲醇被氧化生成二氧化碳和水.
解答 解:(1)①已知:Ⅰ.H2(g)+$\frac{1}{2}$O2(g)═H2O(g)△H2=-242kJ/mol-1
Ⅱ.CH2OH(g)+$\frac{3}{2}$O2═CO2(g)+2H2O(g)△H2=-676kJ/mol-1
根据盖斯定律,Ⅰ×3-Ⅱ可得:CO2(g)+3H2(g)=CH3OH(g)+H2O(g),△H=3×(-242kJ/mol)-(-676kJ/mol)=-50 kJ/mol,
故热化学方程式为:CO2(g)+3H2(g)═CH3OH(g)+H2O(g)△H=-50 kJ/mol;
气态产物能量比液态产物能量高,由①分析可知,合成甲醇的反应为放热反应,反应物的能量高于生成物的能量,则符合条件的图象是a,
故答案为:CO2(g)+3H2(g)═CH3OH(g)+H2O(g)△H=-50 kJ/mol;a;
②若起始时c(CO)=1mol•L-1,c(H2O)=2mol•L-1,设H2O的浓度变化量为xmol/L,则:
H2O(g)+CO(g)?H2(g)+CO2(g)
起始量(mol/L):2 1 0 0
变化量(mol/L):x x x x
平衡量(mol/L):2-x 1-x x x
则$\frac{x×x}{(1-x)×(2-x)}$=4,解得x=$\frac{2}{3}$,
故水的转化率为$\frac{\frac{2}{3}mol/L}{2mol/L}$×100%=33.3%,
故答案为:33.3%;
(2)①由表中数据可知,从2min到4min,CO的浓度变化量为(0.07-0.06)mol/L=0.01mol/L,根据方程式可知氢气的浓度变化量为0.01mol/L×2=0.02mol/L,2min时氢气浓度=0.12mol/L+0.02mol/L=0.14mol/L,
4min与6min时,CO浓度相等,则4min、6min时反应处于平衡状态,故平衡常数K=$\frac{c(C{H}_{3}OH)}{c(CO)×{c}^{2}({H}_{2})}$=$\frac{0.04}{0.06×0.1{2}^{2}}$=46.3,
故答案为:0.14;46.3;
②对比6min和8min时各物质的浓度可知改变条件后反应反应向正方向进行,按照转化量之比等于计量系数之比△C(CO):△C(H2):△C(CH3OH)=0.01mol/L:0.02mol/L:0.01mol/L,所以8min后三种物质的浓度应为:(0.06-0.01)mol/L、(0.12-0.02)mol/L、(0.04+0.01)mol/L,而8min后氢气的浓度为0.2mol/L,所以多加了0.1mol/L×10=1mol的氢气;
8min时浓度商Qc=$\frac{0.05}{0.05×0.{2}^{2}}$=25<K=46.3,故8min时不是平衡状态,反应向正反应进行,
故答案为:加入1mol氢气;不是;
(3)甲醇燃料电池中,甲醇在负极发生氧化反应2CH3OH-12e-+6CO32-=8CO2+4H2O,
故答案为:2CH3OH-12e-+6CO32-=8CO2+4H2O.
点评 本题考查较为综合,涉及化学平衡计算及影响因素、平衡常数计算及应用、热化学方程式书写、原电池等知识,为高考常见题型和高频考点,侧重于学生的分析能力和计算能力的考查,难度中等.
| A. | 电子云表示电子在核外单位体积的空间出现的机会多少 | |
| B. | 同一原子处于激发态时的能量一定高于基态时的能量 | |
| C. | 各能级包含的原子轨道数按s、p、d、f的顺序依次为1、3、5、7 | |
| D. | 1个原子轨道里最多只能容纳2个电子,且自旋方向相同 |
I、已知2NO(g)+O2(g)═2NO2(g)△H=b kJ•mol-1;CO的燃烧热△H=c kJ•mol-1.写出消除汽车尾气中NO2的污染时,NO2与CO反应的热化学方程式2NO2(g)+4CO(g)=N2(g)+4CO2(g)△H=a-b+2c kJ•mol-1.
II、一定条件下,在一密闭容器中,用传感器测得该反应在不同时间的NO和CO浓度如表:
| 时间/s | 0 | 1 | 2 | 3 | 4 | 5 |
| c(NO)/mol•L-1 | 1.00 | 0.8 | 0.64 | 0.55 | 0.5 | 0.5 |
| c(CO)/mol•L-1 | 3.50 | 3.30 | 3.14 | 3.05 | 3.00 | 3.00 |
(2)前2s内的平均反应速率υ(N2)=0.09mol/(L•s)(保留两位小数,下同);此温度下,该反应的平衡常数为0.03mol•L-1.
(3)采用低温臭氧氧化脱硫脱硝技术,同时吸收SO2和NOx,获得(NH4)2SO4的稀溶液,
①常温条件下,此溶液的PH=5,则$\frac{c(N{{H}_{4}}^{+})}{c(N{H}_{3}•{H}_{2}O)}$=1.7×104(已知该温度下NH3•H2O的Kb=1.7×10-5)
②向此溶液中再加入少量 (NH4)2SO4固体,$\frac{c(N{{H}_{4}}^{+})}{c(S{{O}_{4}}^{2-})}$的值将变大(填“变大”、“不变”或“变小”)
(4)设计如图1装置模拟传感器测定CO与 NO反应原理.
①铂电极为正极(填“正极”或“负极”).
②负极电极反应式为CO+O2--2e-=CO2
III、如图2所示,无摩擦、无质量的活塞1、2将反应器隔成甲、乙两部分,在25℃和101kPa下实现平衡时,各部分体积分别为V甲、V乙.此时若去掉活塞1,不引起活塞2的移动.则x=1.5,V甲:V乙=3:1.
①CO(g)+2H2(g)?CH3OH(g)△H1=-90.7kJ•mol-1
②2CH3OH(g)?CH3OCH3(g)+H2O(g)△H2=-23.5k1•mol-1
③CO(g)+H2O(g)?CO2(g)+H2(g)△H3=-41.2kJ•mol-1
(1)催化反应室中总反应的热化学方程式为3CO(g)+3H2(g)?CH3OCH3(g)+CO2(g)△H=-246.1kJ•mol-1.
830℃时反应③的K=1.0,则在催化反应室中反应③的K>1.0(填“>”、“<”或“=”).
(2)在某温度下,若反应①的起始浓度分别为:c(CO)=1mol/L、c(H2)=2.4mol/L,5min后达到平衡、CO的转化率为50%,则5min内CO的平均反应速率为0.1mol/(L•min).
(3)反应②2CH3OH(g)═CH3OCH3(g)+H2O(g) 在某温度下的平衡常数为400.此温度下,在密闭容器中加入CH3OH,反应到某时刻测得各组分的浓度如下:
| 物质 | CH3OH | CH3OCH3 | H2O |
| 浓度/(mol•L-1) | 0.64 | 0.50 | 0.50 |
②若加入CH3OH后,经10min反应达到平衡,此时c(CH3OH)=0.04mol•L-1.
(4)“二甲醚燃料电池”是一种绿色电源,其中工作原理如图所示.
①该电池a电极上发生的电极反应式CH3OCH3+3H2O-12e-=2CO2+12H+.
②如果用该电池作为电解装置,当有23g二甲醚发生反应时,则理论上提供的电量表达式为0.5mol×12×1.6×10-19C×6.02×1023
mol-1C (1个电子的电量为1.6×10-19C).
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |