题目内容
17.(1)已知在标准状况下,11.2L氢气在氧气中完全燃烧生成液态水时放出热量142.9kJ.请回答:
①写出表示氢气燃烧热的热化学方程式:H2(g)+1/2O2(g)=H2O(l)△H=-245.8KJ?mol-1
②若断开1mol氢气中的化学键消耗的能量为Q1kJ,断开1mol氧气中的化学键消耗的能量为Q2kJ,形成1mol水中的化学键释放的能量为Q3kJ,则下列关系正确的是B
A.Q1+Q2<Q3 B.2Q1+Q2<2Q3C.2Q1+Q2>2Q3 D.Q1+Q2>Q3
③能源分一级能源和二级能源,氢气属于二级能源.下列叙述正确的是AC
A.电能是二级能源 B.水力是二级能源 C.天然气是一级能源
(2)甲醇是重要的基础化工原料,又是一种新型的燃料,制取甲醇的传统方法是采用CuO~ZnO/r~Al2O3为催化剂,合成反应为:CO+2H2→CH3OH.生产中一些工艺参数如图所示.该反应为放热(填“吸热”或“放热”)反应.
(3)最近有人制造了一种燃料电池,一个电极通入空气,另一个电极加入甲醇,电池的电解质是掺杂了Y2O3的ZrO2晶体,它在高温下能传导O2-离子.该电池的正极反应式为O2+4e-=2O2-.电池工作时,固体电解质里的O2-向负极移动.
分析 (1)①根据热化学方程式的书写方法;
②学反应中旧键断裂需要吸收能量,新键形成需要放出能量,化学反应中的反应热△H=反应物总键能-生成物总键能,H-H键的键能为436kJ/mol,O═O键的键能为498kJ/mol,注意氢气在氧气中燃烧,反应热△H<0,每摩尔H2O中含有2molH-O键,据此计算;
③A.电能是二级能源; B.水力是一级能源; C.天然气是一级能源;
(2)根据温度对化学平衡的影响;
(3)根据原电池原理,正极O2得到电子生成负极O2-;电池中阴离子向负极移动.
解答 解:(1)①11.2L氢气的物质的量为0.5mol,其完全燃烧生成H2O(l),可放出142.9kJ的热量,则1mol甲烷其完全燃烧放出热量245.8KJ,则氢气燃烧的热化学方程式为H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H=-245.8KJ?mol-1,故答案为:H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H=-245.8KJ?mol-1;
②破坏1molH-H消耗的能量为Q1kJ,则H-H键能为Q1kJ/mol,破坏1molO═O键消耗的能量为Q2kJ,则O═O键键能为Q2kJ/mol,
形成1mol水中的化学键释放的能量为Q3kJ,每摩尔H2O中含有2molH-O键,1molH-O键释放的能量为$\frac{1}{2}$Q3kJ,则H-O键能为$\frac{1}{2}$Q3kJ/mol,
对于反应2H2(g)+O2(g)═2H2O(l)反应热△H=反应物的总键能-生成物的总键能,
故:反应热△H=2Q1kJ/mol+Q2kJ/mol-4×$\frac{1}{2}$Q3kJ/mol=(2Q1+Q2-2Q3)KJ/mol,
由于氢气在氧气中燃烧,反应热△H<0,即(2Q1+Q2-2Q3)<0,所以2Q1+Q2<2Q3,故选B;
③A.电能是二级能源; B.水力是一级能源; C.天然气是一级能源,故选:AC;
(2)由图可知:论在何种压强下,都是温度越高,CO的转化率越小,说明正反应放热,
故答案为:放热;
(3)根据原电池原理,正极O2得到电子生成负极O2-:O2+4e-=2O2-,电池中阴离子向负极移动,故答案为:O2+4e-=2O2-;负.
点评 本题考查热化学方程式的书写,电极方程式的书写等,要能根据题目所给信息解题,善于发掘题目信息.
注:①实验药品:硫酸铜晶体12.5g、氯化钠晶体6.0g、水200ml、铜粉3.5g、浓盐酸10ml.
②Na[CuCl2](易电离,溶液无色)$\frac{\underline{\;水\;}}{\;}$NaCl+CuCl↓ (白色沉淀).
请回答:
(1)写出实验室制取Na[CuCl2]的离子方程式Cu2++4Cl-+Cu=2[CuCl2]-.
(2)判断步骤②反应完全的现象是反应溶液由蓝色转变成无色透明时为止.
(3)步骤④有关抽滤操作,下列说法正确的是AD.
A.选择抽滤主要是为了加快过滤速度,得到较干燥的沉淀
B.在吸滤瓶和抽气泵之间应连接一个安全瓶,吸滤瓶应与安全瓶的长导管相接
C.抽滤时不宜过滤胶状沉淀,否则易在滤纸上形成一层密实的沉淀
D.洗涤沉淀时,应关小水龙头,使洗涤剂缓缓通过沉淀物
(4)步骤⑤用乙醇的水溶液洗涤的目的是水洗涤除去氯化亚铜表面吸附的杂质,提高产品纯度,同时减少产品的溶解,减少损失.
(5)步骤⑥烘干须在真空干燥箱中进行,其原因是氯化亚铜在潮湿的空气中能迅速氧化生成碱式盐而变质.
(6)氯化亚铜的定量分析:
①取样品0.25g和10ml过量的FeCl3溶液于250ml锥形瓶中,充分溶解.
②用0.10mol•L-1硫酸锶铈标准溶液滴定.
已知:CuCl+FeCl3=CuCl2+FeCl2; Fe2++Ce4+=Fe3++Ce3+三次平行试验结果如下(平行试验结果相差不能超过1%):
| 平行试验次数 | 1 | 2 | 3 |
| 0.25g样品消耗硫酸铈标准溶液的体积(ml) | 24.35 | 24.05 | 23.95 |
| A. | 硫酸钠溶液 | B. | 稀硝酸 | C. | 浓硫酸 | D. | 氯化铵溶液 |
(1)实验方案:将表中所给的混合溶液分别加入到6个盛有过量Zn粒的锥形瓶中,收集产生的气体.记录单位时间氢气产生的体积.
| 实验混合溶液 | A | B | C | D | E | F |
| 4mol/LH2SO4/mL | 30 | V1 | V2 | V3 | V4 | V5 |
| 饱和CuSO4溶/mL | 0 | 0.5 | 2.5 | 5 | V6 | 20 |
| H2O/mL | V7 | V8 | V9 | V10 | 10 | 0 |
(2)实验装置:甲同学拟选用图1实验装置完成实验:
①你认为最简易的装置其连接顺序是:A接E接D接G(填接口字母,可不填满.)
②实验开始时,先打开分液漏斗上口的玻璃塞,再轻轻打开其活塞,一会儿后稀硫酸就不能顺利滴入锥形瓶.请你帮助分析原因锌与稀硫酸反应放热且生成气体,使锥形瓶中气体压强变大.
③实验最后,在读取测量实验中生成氢气的总体积时,你认为合理的是ACD.
A.待实验装置冷却后再读数
B.上下移动量筒F,使其中液面与广口瓶中液面相平
C.上下移动量筒G,使其中液面与广口瓶中液面相平
D.视线与凹液面的最低点水平读取量筒中水的体积
④乙同学认为可选用图2装置中的B(填A或B)直接与锥形瓶的导管A相连用以测量氢气的体积,理由是防止气体冷却时发生倒吸现象;实验结束时量筒内的液面高于水槽中液面,立即读数会使氢气的总体积偏大(填“偏大”“偏小”或“不变”);应进行的操作是应慢慢把量筒往下移,使量筒中液面恰好与水槽中液面相平;
(3)实验现象与结论:反应一段时间后,实验A中的金属呈灰黑色,实验E中的金属呈暗红色;该学习小组最后得出的结论为:当加入少量CuSO4溶液时,生成氢气的速率会大大提高.但当加入的CuSO4溶液超过一定量时,生成氢气的速率反而会下降.请分析氢气生成速率下降的主要原因当加入一定量的硫酸铜后,生成的单质铜会沉积在锌的表面,降低了锌与溶液的接触面积.
(4)问题讨论:实验室中现有Na2SO4、MgSO4、AgSO4、K2SO4等4种溶液,可与实验中CuSO4溶液起相似作用的是Ag2SO4;要加快上述实验中气体产生的速率,还可采取的措施有升高反应温度;适当增加硫酸的浓度(答两种).
| A. | 丙三醇 | B. | 乙炔 | C. | 丙烯 | D. | 丁烷 |