ÌâÄ¿ÄÚÈÝ
7£®£¨1£©EÔªËØÔÚÖÜÆÚ±íÖеÄλÖÃÊǵÚËÄÖÜÆÚ¢ø×壮
£¨2£©ÁùÖÖÔªËØÖе縺ÐÔ×î´óµÄÔªËØÎªO£¬Ç°ÎåÖÖÔªËØÖеÚÒ»µçÀëÄÜ×îСµÄÔªËØÎªNi£¨Ð´ÔªËØ·ûºÅ£©£®CÔªËØÓëÔªËØ·úÄÜÐγÉC2F2·Ö×Ó£¬¸Ã·Ö×ÓÖÐCÔ×ÓµÄÔÓ»¯·½Ê½ÊÇsp2£®
£¨3£©ÅäºÏÎïE£¨BD£©4³£ÎÂÏÂΪҺ̬£¬Ò×ÈÜÓÚCCl4¡¢±½µÈÓлúÈܼÁ£¬¾Ý´ËÅжϸ÷Ö×ÓÊôÓڷǼ«ÐÔ·Ö×Ó£¨Ìî¡°¼«ÐÔ¡±»ò¡°·Ç¼«ÐÔ¡±£©£®¸Ã·Ö×ÓÖЦҼüÓë¦Ð¼üÊýÄ¿±ÈΪ1£º1£®
£¨4£©Hµ¥Öʵľ§°û½á¹¹ÈçͼËùʾ£¬ÔòÔ×Ó²ÉÈ¡µÄ¶Ñ»ý·½Ê½ÎªÃæÐÄÁ¢·½×îÃܶѻý£¬ÈôÒÑÖªHÔ×Ӱ뾶Ϊr pm£¬NA±íʾ°¢·üÙ¤µÂÂÞ³£Êý£¬Ä¦¶ûÖÊÁ¿ÎªM£¬ÓÃÏàÓ¦×Öĸ±íʾ£º
¢Ù¸ÃÔ×ÓµÄÅäλÊýΪ12£®
¢Ú¸Ã¾§ÌåµÄÃܶÈΪ$\frac{M¡Á1{0}^{30}}{4\sqrt{2}{r}^{3}{N}_{A}}$g/cm3£®
¢ÛHÔ×Ó²ÉÈ¡ÕâÖÖ¶Ñ»ý·½Ê½µÄ¿Õ¼äÀûÓÃÂÊΪ$\frac{\sqrt{2}¦Ð}{6}$¡Á100%£¨Óú¬¦Ð±í´ïʽ±íʾ£©£®
·ÖÎö ǰËÄÖÜÆÚÔ×ÓÐòÊýÒÀ´ÎÔö´óµÄÁùÖÖÔªËØ£¬A¡¢B¡¢C¡¢D¡¢E¡¢HÖУ¬AÔªËØÔÚÓîÖæÖк¬Á¿×î·á¸»£¬ÔòAΪÇâÔªËØ£»BÔªËØ»ù̬Ô×ӵĺËÍâÓÐ3ÖÖÄÜÁ¿²»Í¬µÄÔ×Ó¹ìµÀ£¬ÇÒÿÖÖ¹ìµÀÖеĵç×ÓÊýÄ¿Ïàͬ£¬Ô×ÓºËÍâµç×ÓÅŲ¼Ê½Îª1s22s22p2£¬¹ÊBÎªÌ¼ÔªËØ£»DÔªËØÊǵؿÇÖк¬Á¿×î¶àµÄÔªËØÔòDΪÑõÔªËØ£»CµÄÔ×ÓÐòÊý½éÓÚ̼¡¢ÑõÖ®¼ä£¬¹ÊCΪµªÔªËØ£»EΪdÇøÔªËØ£¬ÆäÍâΧµç×ÓÅŲ¼ÖÐÓÐ4¶Ô³É¶Ôµç×Ó£¬ÍâΧµÄµç×ÓÅŲ¼Ê½Îª3d84s2£¬¹ÊEΪNi£»HÔªËØ»ù̬Ô×Ó×îÍâ²ãÖ»ÓÐÒ»¸öµç×Ó£¬ÆäËü²ã¾ùÒѳäÂúµç×Ó£¬Ô×ÓºËÍâµç×ÓÊýΪ2+8+18+1=29£¬¹ÊHΪCu£®
½â´ð ½â£ºÇ°ËÄÖÜÆÚÔ×ÓÐòÊýÒÀ´ÎÔö´óµÄÁùÖÖÔªËØ£¬A¡¢B¡¢C¡¢D¡¢E¡¢HÖУ¬AÔªËØÔÚÓîÖæÖк¬Á¿×î·á¸»£¬ÔòAΪÇâÔªËØ£»BÔªËØ»ù̬Ô×ӵĺËÍâÓÐ3ÖÖÄÜÁ¿²»Í¬µÄÔ×Ó¹ìµÀ£¬ÇÒÿÖÖ¹ìµÀÖеĵç×ÓÊýÄ¿Ïàͬ£¬Ô×ÓºËÍâµç×ÓÅŲ¼Ê½Îª1s22s22p2£¬¹ÊBÎªÌ¼ÔªËØ£»DÔªËØÊǵؿÇÖк¬Á¿×î¶àµÄÔªËØÔòDΪÑõÔªËØ£»CµÄÔ×ÓÐòÊý½éÓÚ̼¡¢ÑõÖ®¼ä£¬¹ÊCΪµªÔªËØ£»EΪdÇøÔªËØ£¬ÆäÍâΧµç×ÓÅŲ¼ÖÐÓÐ4¶Ô³É¶Ôµç×Ó£¬ÍâΧµÄµç×ÓÅŲ¼Ê½Îª3d84s2£¬¹ÊEΪNi£»HÔªËØ»ù̬Ô×Ó×îÍâ²ãÖ»ÓÐÒ»¸öµç×Ó£¬ÆäËü²ã¾ùÒѳäÂúµç×Ó£¬Ô×ÓºËÍâµç×ÓÊýΪ2+8+18+1=29£¬¹ÊHΪCu£®
£¨1£©EΪNi£¬ÔªËØÔÚÖÜÆÚ±íÖеÄλÖÃÊǵÚËÄÖÜÆÚ¢ø×壬
¹Ê´ð°¸Îª£ºµÚËÄÖÜÆÚ¢ø×壻
£¨2£©ÁùÖÖÔªËØÖÐÑõÔªËØ·Ç½ðÊôÐÔ×î´ó£¬Ôòµç¸ºÐÔ×î´óµÄÔªËØÎªO£¬Ç°ÎåÖÖÔªËØÖÐ×¢ÒâNiΪ½ðÊôÔªËØ£¬ÆäËü¾ùΪ·Ç½ðÊôÔªËØ£¬¹ÊµÚÒ»µçÀëÄÜ×îСµÄÔªËØÎªNi£¬CÔªËØÓëÔªËØ·úÄÜÐγÉN2F2·Ö×Ó£¬½á¹¹Ê½ÎªF-N=N-F£¬¸Ã·Ö×ÓÖÐNÔ×ÓÐγÉ2¸ö¦Ò¼ü£¬º¬ÓÐ1¶Ô¹Â¶Ôµç×Ó£¬ÔÓ»¯¹ìµÀÊýĿΪ3£¬µªÔ×Ó²ÉÈ¡sp2ÔÓ»¯£¬
¹Ê´ð°¸Îª£ºO£»Ni£»sp2£»
£¨3£©ÅäºÏÎïNi£¨CO£©4³£ÎÂÏÂΪҺ̬£¬Ò×ÈÜÓÚCCl4¡¢±½µÈÓлúÈܼÁ£¬½áºÏÏàËÆÏàÈÜÔÀíÅжϸ÷Ö×ÓÊôÓڷǼ«ÐÔ·Ö×Ó£¬NiÓëCOÖ®¼äÐγÉÅäλ¼ü£¬COÓëN2»¥ÎªµÈµç×ÓÌ壬COµÄ½á¹¹Ê½ÎªC¡ÔO£¬ÔòNi£¨CO£©4·Ö×ÓÖЦҼüÓë¦Ð¼üÊýÄ¿±ÈΪ8£º8=1£º1£¬
¸Ä´ð°¸Îª£º·Ç¼«ÐÔ£»1£º1£»
£¨4£©Hµ¥Öʵľ§°û½á¹¹ÖÐÔ×Ó´¦ÓÚ¶¥µãÓëÃæÐÄ£¬ÔòÔ×Ó²ÉÈ¡µÄ¶Ñ»ý·½Ê½Îª ÃæÐÄÁ¢·½×îÃܶѻý£¬
¢ÙÒÔ¶¥µãÔ×ÓÑо¿£¬ÓëÖ®ÏàÁÚµÄÔ×Ó´¦ÓÚÃæÐÄ£¬Ã¿¸ö¶¥µãΪ8¸ö¾§°û¹²Óã¬Ã¿¸öÃæÐÄΪ2¸ö¾§°û¹²Ó㬾§°ûÖÐÔ×ÓµÄÅäλÊýÊÇ$\frac{3¡Á8}{2}$=12£»
¢ÚÈôHÔ×ӵİ뾶Ϊr pm£¬Ôò¾§°ûÀⳤΪ4r pm¡Á$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$r pm£¬Ôò¾§°ûÌå»ýΪ£¨2$\sqrt{2}$r¡Á10-10 cm£©3£¬¾§°ûÖÐHÔ×ÓÊýĿΪ8¡Á$\frac{1}{8}$+6¡Á$\frac{1}{2}$=4£¬Ôò¾§°ûÖÊÁ¿Îª4¡Á$\frac{M}{{N}_{A}}$g£¬Ôò¸Ã¾§ÌåµÄÃܶÈΪ 4¡Á$\frac{M}{{N}_{A}}$g¡Â£¨2$\sqrt{2}$r¡Á10-10 cm£©3=$\frac{M¡Á1{0}^{30}}{4\sqrt{2}{r}^{3}{N}_{A}}$ g/cm3£®
¢ÛÈôHÔ×ӵİ뾶Ϊr£¬Ôò¾§°ûÀⳤΪ4r¡Á$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$r£¬Ôò¾§°ûÌå»ýΪ£¨2$\sqrt{2}$r£©3£¬¾§°ûÖÐHÔ×ÓÊýĿΪ8¡Á$\frac{1}{8}$+6¡Á$\frac{1}{2}$=4£¬¾§°ûÖÐQÔ×ÓÕ¼ÓеÄ×ÜÌå»ýΪ4¡Á$\frac{4}{3}$¦Ðr3£¬¾§°ûÖÐÔ×ӵĿռäÀûÓÃÂÊ=$\frac{4¡Á\frac{4}{3}¦Ð{r}^{3}}{£¨2\sqrt{2}r£©^{3}}$¡Á100%=$\frac{\sqrt{2}¦Ð}{6}$¡Á100%£¬
¹Ê´ð°¸Îª£ºÃæÐÄÁ¢·½×îÃܶѻý£»¢Ù12£»¢Ú$\frac{M¡Á1{0}^{30}}{4\sqrt{2}{r}^{3}{N}_{A}}$£»¢Û$\frac{\sqrt{2}¦Ð}{6}$¡Á100%£®
µãÆÀ ±¾ÌâÊǶÔÎïÖʽṹÓëÐÔÖʵĿ¼²é£¬Éæ¼°ºËÍâµç×ÓÅŲ¼¡¢µçÀëÄÜ¡¢µç¸ºÐÔ¡¢ÔÓ»¯·½Ê½¡¢¾§ÌåÀàÐÍÓëÐÔÖÊ¡¢»¯Ñ§¼ü¡¢¾§°û½á¹¹Óë¼ÆËãµÈ£¬£¨4£©ÖйؼüÊÇÀí½âÔ×Ó°ë¾¶Óë¾§°ûÀⳤ¹ØÏµ£¬ÕÆÎÕ¾ù̯·¨½øÐо§°ûÓйؼÆË㣬עÒâͬÖÜÆÚµÚÒ»µçÀëÄÜÒì³£Çé¿ö£®
| A£® | ${\;}_{22}^{18}$TiºÍ${\;}_{22}^{50}$TiÔ×ÓÖоùº¬ÓÐ22¸öÖÐ×Ó | |
| B£® | ${\;}_{22}^{18}$TiºÍ${\;}_{22}^{50}$TiÔÚÖÜÆÚ±íÖÐλÖÃÏàͬ£¬¶¼ÔÚµÚ4×ÝÐÐ | |
| C£® | ${\;}_{22}^{18}$TiºÍ${\;}_{22}^{50}$TiµÄÎïÀíÐÔÖÊÏàͬ | |
| D£® | ${\;}_{22}^{18}$TiºÍ${\;}_{22}^{50}$TiΪͬһºËËØ |