题目内容

15.硒是人体必需的微量元素,它在元素周期表中的位置如图所示.
(1)硒(Se)的最高价氧化物水化物的化学式为H2SeO4;该族2~5周期元素单质分别与H2反应生成l mol气态氢化物的反应热如下,请写出1mol硒与H2反应生成气态氢化物的热化学方程式H2(g)+Se(s)═H2Se(g)H=+29.7kJ/mol
a.+99.7kJ•mol-1         b.+29.7kJ•mol-1c.-20.6kJ•mol-1       d.-241.8kJ•mol-1
(2)不同元素的气态原子失去最外层一个电子所需要的能量(设其为E)如图所示.试根据元素在周期表中的位置,分析图中曲线的变化特点,并回答下列问题.
同周期内,随原子序数增大,E值增大.但个别元素的E值出现反常现象.试预测下列关系式中正确的是ac(填写编号,多选倒扣)
a、E(砷)>E(硒)
b、E(砷)<E(硒)
c、E(溴)>E(硒)
d、E(溴)<E(硒)
估计1mol气态Ca原子失去最外层一个电子所需能量E值的范围419<E<738.

分析 (1)Se的最高化合价为+6,结合硫酸的分子式书写最高价氧化物对应的水化物化学式;同主族自上而下非金属性减弱,单质与氢气反应剧烈程度减小,反应热增大(考虑符号);
(2)同一周期中,从左到右第一电离能逐渐增大,第ⅤA族最外层为半充满结构,较稳定,第一电离能较大.

解答 解:(1)Se与O元素同族元素,Se的最高化合价为+6,最高价氧化物对应的水化物化学式为H2SeO4,同主族自上而下非金属性减弱,单质与氢气反应剧烈程度减小,反应热增大(考虑符号),故生成1mol硒化氢(H2Se)反应热应排在第二位,应为+29.7kJ•mol-1,则热化学方程式为H2(g)+Se(s)═H2Se(g)  H=+29.7kJ/mol,
故答案为:H2SeO4;H2(g)+Se(s)═H2Se(g)  H=+29.7kJ/mol;
(2)同一周期中,从左到右第一电离能逐渐增大,第ⅤA族元素的E值大于第ⅥA族的小于第ⅥⅠA的,则ac正确;
同一周期,第ⅠA族的E值小于第ⅡA族的,所以钙的第一电离能大于419 KJ/mol,同一主族,E值随着原子序数的增大而减小,所以钙的第一电离能小于738 KJ/mol.
故答案为:ac;419<E<738.

点评 本题考查位置、结构、性质的相互关系及应用,题目难度不大,注意把握元素周期律的主要内容,注意电离能的大小与核外电子排布的关系.

练习册系列答案
相关题目
5.NaCN为剧毒无机物.某化学兴趣小组查阅资料得知,实验室里的氰化钠溶液可使用硫代硫酸钠溶液进行统一解毒销毁,他们开展了以下三个实验,根据要求回答问题:
实验Ⅰ.硫代硫酸钠晶体(Na2S2O3?5H2O)的制备
已知Na2S2O3•5H2O对热不稳定,超过48℃即开始丢失结晶水.现以亚硫酸钠、硫化钠和碳酸钠等为原料、采用下述装置制备硫代硫酸钠,反应原理为:
①Na2CO3+SO2=Na2SO3+CO2
②Na2S+SO2+H2O=Na2SO3+H2S
③2H2S+SO2=3S↓+2H2O
④Na2SO3+S$\frac{\underline{\;\;△\;\;}}{\;}$Na2S2O3
(1)将硫化钠和碳酸钠按反应要求的比例一并放入三颈烧瓶中,注入150mL蒸馏水使其溶解,在蒸馏烧瓶中加入亚硫酸钠固体,在分液漏斗中注入C(填以下选择项的字母),并按如图安装好装置,进行反应.
A.稀盐酸      B.浓盐酸      C.70%的硫酸      D.稀硝酸
从以上反应可知Na2S 与Na2CO3的最佳物质的量比是2:1.
(2)pH小于7即会引起Na2S2O3溶液的变质反应,会出现淡黄色混浊.反应约半小时,当溶液中pH接近或不小于7时,即可停止通气和加热.如果SO2通过量,发生的化学反应方程式为Na2S2O3+SO2+H2O=2NaHSO3+S↓.
(3)从上述生成物混合液中获得较高产率Na2S2O3?5H2O的歩骤为

为减少产品的损失,操作①为趁热过滤,其目的是趁热是为了防止晶体在过滤的过程中在漏斗中析出导致产率降低,过滤是为了除去活性炭、硫等不溶性杂质;
操作②是蒸发浓缩,冷却结晶;操作③是抽滤、洗涤、干燥.
Ⅱ.产品纯度的检测
(1)已知:Na2S2O3?5H2O的摩尔质量为248g/mol;2Na2S2O3+I2=2NaI+Na2S4O6.取晶体样品ag,加水溶解后,滴入几滴淀粉溶液,用0.010mol/L碘水滴定到终点时,消耗碘水溶液vmL,则该样品纯度是$\frac{0.496v}{a}$%
Ⅲ.有毒废水的处理
化学兴趣小组的同学在配备防毒口罩,橡胶手套和连衣式胶布防毒衣等防护用具以及老师的指导下进行以下实验:
向装有2ml0.1mol/L 的NaCN溶液的试管中滴加2ml0.1mol/L 的Na2S2O3溶液,两反应物恰好完全反应,但没有明显实验现象,取反应后的溶液少许滴入盛有10ml0.1mol/L FeCl3溶液的小烧杯,溶液呈现血红色,请写出Na2S2O3解毒的离子反应方程式CN-+S2O32-=SCN-+SO32-
10.为解决大气中CO2的含量增大的问题,某科学家提出“绿色自由”构想:把工厂排出的富含CO2的废气经净化吹入碳酸钾溶液吸收,然后再把CO2从溶液中提取出来,经化学反应使废气中的CO2转变为燃料甲醇.“绿色自由”构想的部分技术流程如图1

(1)合成塔中反应的化学方程式为CO2+3H2$\stackrel{一定条件}{→}$CH3OH+H2O;△H<0.从平衡移动原理分析,低温有利于提高原料气的平衡转化率.而实际生产中采用300℃的温度,除考虑温度对反应速率的影响外,还主要考虑了催化剂的催化活性.
(2)从合成塔分离出甲醇的原理与下列 操作的原理比较相符C(填字母)
A.过滤    B.分液    C.蒸馏    D.结晶
工业流程中一定包括“循环利用”,“循环利用”是提高效益、节能环保的重要措施.“绿色自由”构想技术流程中能够“循环利用”的,除K2CO3溶液和CO2、H2外,还包括.
(3)在体积为2L的合成塔中,充人2mol CO2和6mol H2,测得CO2(g)和CH3OH(g)的浓度随时间变化如图2所示.
从反应开始到平衡,V(H2)=0.24mol/(L•min);能使平衡体系中$\frac{n(C{H}_{3}OH)}{n(C{O}_{2})}$增大的措施有增大H2的用量等.
(4)如将CO2与H2以1:4的体积比混合,在适当的条件下可制得CH4
已知
CH4(g)+2O2(g)═CO2(g)+2H2O(l)△H1=-890.3kJ/mol
H2(g)+$\frac{1}{2}$O2(g)═H2O(l)△H2=-285.5kJ/mol
写出CO2(g)与H2(g)反应生成CH4(g)与液态水的热化学方程式CO2(g)+4H2 (g)=CH4(g)+2H2O(l)△H=-252.9kJ/mol.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网