如图所示是二次函数y=的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )

A. 4 B. C. 2π D. 8

B 【解析】函数与y轴交于(0,2)点,与x轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S1=4,则以半径为2的半圆的面积为S2=π××22=2π,则阴影部分的面积S有:4<S<2π.因为选项A、C、D均不在S取值范围内.故选 B

周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m

A. B. C. 4 D.

B 【解析】设窗户的宽是x,根据题意得 S= = ∴当窗户宽是m时,面积最大是m²,故选B.

如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是(  )

A. 6s B. 4s C. 3s D. 2s

A 【解析】试题分析:由小球高度h与运动时间t的关系式h=30t﹣5t2,令h=0,解得的两值之差便是所要求得的结果. 由小球高度h与运动时间t的关系式h=30t﹣5t2. 令h=0,﹣5t2+30t=0 解得:t1=0,t2=6 △t=6,小球从抛出至回落到地面所需要的时间是6秒.

如图,二次函数y= -x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足

S△AOP=3,则点P的坐标是(  )

A. (-3,-3) B. (1,-3) C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)

D 【解析】分析:根据抛物线的解析式,即可确定点A的坐标,由于OA是定长,根据△AOP的面积即可确定P点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P点的坐标. 解答:【解析】 抛物线的解析式中,令y=0,得:-x2-2x=0,解得x=0,x=-2; ∴A(-2,0),OA=2; ∵S△AOP=OA?|yP|=3,∴|yP|=3; 当P点纵坐标为3时,-x2-...

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )

A. y=x+1 B. y=x-1 C. y=x2-x+1 D. y=x2-x-1

C 【解析】试题分析:易证△ABE∽△ECF,根据相似三角形对应边的比相等即可求解. 【解析】 ∵∠BAE和∠EFC都是∠AEB的余角. ∴∠BAE=∠FEC. ∴△ABE∽△ECF 那么AB:EC=BE:CF, ∵AB=1,BE=x,EC=1﹣x,CF=1﹣y. ∴AB•CF=EC•BE, 即1×(1﹣y)=(1﹣x)x. 化简得:y=x2...

如图,隧道的截面是抛物线,可以用y= 表示,该隧道内设双行道,限高为3m,那么每条行道宽是(  )

A. 不大于4m B. 恰好4m C. 不小于4m D. 大于4m,小于8m

A 【解析】把y=3代入y= 中得: x=4,x= -4(舍去). ∴每条行道宽应不大于4m. 故选A. 点睛;本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.由题意可知,直接把y=3代入解析式求解即可.
 0  322201  322209  322215  322219  322225  322227  322231  322237  322239  322245  322251  322255  322257  322261  322267  322269  322275  322279  322281  322285  322287  322291  322293  322295  322296  322297  322299  322300  322301  322303  322305  322309  322311  322315  322317  322321  322327  322329  322335  322339  322341  322345  322351  322357  322359  322365  322369  322371  322377  322381  322387  322395  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网