题目内容

如图所示是二次函数y=的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )

A. 4 B. C. 2π D. 8

B 【解析】函数与y轴交于(0,2)点,与x轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S1=4,则以半径为2的半圆的面积为S2=π××22=2π,则阴影部分的面积S有:4<S<2π.因为选项A、C、D均不在S取值范围内.故选 B
练习册系列答案
相关题目

在△ABC中,AB =AC,∠A=80°,则∠B=__________.

50° 【解析】∵AB=AC, ∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上, ∴线段AB、AC关于折痕轴对称, 设折痕与BC交点为D, 则△ABD、△ACD关于直线AD轴对称, ∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°. 故答案为:50°.

如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为 m(结果不作近似计算).

【解析】 试题分析:过点D作DE⊥AB于点E, 则四边形BCDE是矩形, 根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m, ∴DE=BC=18m,CD=BE, 在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m), 在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m), ∴DC=BE=AB...

如图,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为_____________

(,2)或(,2) 【解析】试题分析:依题意,可设P(x,2)或P(x,﹣2). ①当P的坐标是(x,2)时,将其代入y=x2﹣1,得 2=x2﹣1, 解得x=±, 此时P(,2)或(﹣,2); ②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得 ﹣2=x2﹣1,即﹣1=x2 无解. 综上所述,符合条件的点P的坐标是(,2)或(﹣,2)

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.

(1)写出方程ax2+bx+c=0的两个根;

(2)写出不等式ax2+bx+c>0的解集;

(3)写出y随x的增大而减小的自变量x的取值范围;

(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

(1)x=1或x=3是方程ax2+bx+c=0的两个根;(2)l<x<3;(3)当x>2时,y随x的增大而减小;(4)k<2. 【解析】试题分析:(1)观察图形可以看出抛物线与x轴交于(1,0)和(3,0),即可解题 (2)根据抛物线y=ax2+bx+c,求得y>0的x取值范围即可解题; (3)图中可以看出抛物线对称轴,即可解题; (3)易求得抛物线解析式,根据方程△>0即...

已知函数y=kx2-7x-7的图象和x轴有交点,则k的取值范围是__________

【解析】【解析】 分两种情况讨论:①若k=0,则y=-7x-7是一次函数,与x轴有交点; ②若k≠0,则函数y=kx2-7x-7是二次函数.∵二次函数y=kx2﹣7x﹣7的图象和x轴有交点,∴,∴k≥且k≠0. 综上所述:k≥.故答案为:k≥.

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求出该二次函数图象的顶点坐标和对称轴;

(3)画出二次函数y=x2+bx+c的图象.

(1)b=-4,c=3;(2) (2,-1),x=2;(3)画图见解析. 【解析】试题分析:(1)把已知点的坐标代入解析式,然后解关于b、c的二元一次方程组即可得解; (2)把函数解析式转化为顶点式形式,然后即可写出顶点坐标与对称轴解析式; (3)采用列表、描点法画出图象即可. 试题解析:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0), ∴ 解得 ...

如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )

A. 5米 B. 6米 C. 8米 D.

A 【解析】试题分析:根据CD:AD=1:2,AC=3米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD==8米,则BC=BD-CD=8-3=5米.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网