如图所示,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是________.(只需填一个你认为正确的条件即可).

AD=BC,或AB∥AD(答案不唯一) 【解析】【解析】 根据平行四边形的判定方法,需要增加的条件是:AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为:AD=BC(或AB∥CD).

一个四边形的边长依次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是______,依据是________.

平行四边形 两组对边分别相等的四边形是平行四边形 【解析】【解析】 a2+b2+c2+d2=2ac+2bd,(a2﹣2ac+c2)+(b2﹣2bd+d2)=0,(a﹣c)2+(b﹣d)2=0,∴a﹣c=0,b﹣d=0,∴a=c,b=d,∴四边形是平行四边形(两组对边分别相等的四边形是平行四边形).故答案为:平行四边形,两组对边分别相等的四边形是平行四边形.

如图所示,已知D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长至G,使FG=2DF,连接AG,则ED,AG互相平分吗?请说明理由.

互相平分 【解析】试题分析:求ED与AG互相平分,只要证明四边形AEGD是平行四边形即可解答,由DE∥AC,DE=AF,可得四边形AEDF是平行四边形,所以,AE∥DF且AE=DF,又FG=2DF,则AE=GD,所以,四边形AEGD是平行四边形,即可得出ED与AG互相平分. 试题解析:证明:如图,连接AD,GE,∵DE∥AC,DE=AF,∴四边形AEDF是平行四边形,∴AE∥DF且AE...

已知某个平行四边形的一边长为7,一条对角线长为8,求另一条对角线长的取值范围.

6<x<22. 【解析】试题分析:由平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值范围,进而可求出这条对角线的范围. 试题解析:【解析】 如图,已知平行四边形中,AB=7,AC=8.由题意得,BD=2OB,AC=2OA=8,∴OB=BD,OA=4.在△AOB中,AB﹣OA<OB<AB+OA,可得3<OB<11,即6<BD<22.故答案为:6<BD...

如图所示,在ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.试说明EF和GH互相平分.

答案见解析 【解析】试题分析:如图,连接EG,GF,FH,HE,证明四边形EGFH是平行四边形,问题即可解决. 试题解析:【解析】 连接EG,GF,FH,HE.如图,∵四边形ABCD为平行四边形,∴∠B=∠D,AD=BC.又∵AE=CF,∴AD-AE=BC-CF,即DE=BF.又∵DH=BG,∴△BFG≌△DEH(SAS),∴GF=EH,同理GE=FH,∴四边形EGFH平行四边形,∴...

如图所示,在ABCD中,CE∥BD,EF⊥AB交BA延长线于点F,E,D,A在一条直线上,那么有DF=AE,请你说明理由.(提示:直角三角形中斜边中线等于斜边的一半)

答案见解析 【解析】试题分析:首先根据平行四边形的性质可得AD=BC,AD∥BC,再证明四边形EDBC是平行四边形,可得ED=CB,然后根据直角三角形斜边上的中线等于斜边的一半可得结论. 试题解析:证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC.∵CE∥BD,∴四边形EDBC是平行四边形,∴ED=CB,∴ED=AD.∵EF⊥AB,∴△EFA是直角三角形,∴DF=AE.

如图所示,AD为△ABC的一条角平分线,E,F分别在AC,AB上,DE∥AB,BF=AE.试说明EF=BD.

答案见解析 【解析】试题分析:由角平分线的定义和平行线的性质可证明∠ADE=∠CAD,可得AE=DE,结合条件可证明四边形EFBD为平行四边形,可得EF=BD. 试题解析:证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE∥AB,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴AE=DE.又∵BF=AE,∴DE=BF.又∵DE∥AB,∴四边形EFBD是平行四边形,∴EF=BD. ...

如图,AC是□ABCD的一条对角线,BM⊥AC, DN⊥AC,垂足分别为M,N,四边形BMDN是平行四边形吗?请选择一种你认为比较好的方法证明.

答案见解析 【解析】试题分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,又由BM⊥AC,DN⊥AC,即可得BM∥DN,∠DNA=∠BMC=90°,然后利用AAS证得△ADN≌△CBM,即可得DN=BM,由有一组对边相等且平行的四边形是平行四边形,即可证得四边形BMDN是平行四边形. 试题解析:【解析】 四边形BMDN是平行四边形.理由如下: ∵四边形ABCD是平...

如图,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.

答案见解析 【解析】试题分析:过A、C,B、D分别作BD,AC的平行线,且这些平行线两两相交于E、F、G、H,从而EAOB、BOCF、OCGD、AODH都是平行四边形,利用平行四边形的对角线将平行四边形的面积分为相等的两块,可知ABCD的面积是EFGH面积的一半. 试题解析:【解析】 如图所示,过A、C,B、D分别作BD,AC的平行线,且这些平行线两两相交于E、F、G、H,则四边形E...

如图,直线MN过□ABCD的顶点D,过A,B,C三点,分别作MN的垂线,垂足分别是E,F,G.

求证:DE=FG.

答案见解析 【解析】试题分析:作CH⊥BF与H.可证△AED≌△BHC,得到ED=HC,再由平行线间的距离处处相等得到FG=CH,即可得到结论. 试题解析:证明:作CH⊥BF与H. ∵AE⊥MN,BF⊥MN,∴AE∥BF,∴∠EAD+∠DAB+∠ABF=180°. ∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAB+∠ABF+∠HBC=180°,∴∠EAD=∠HB...
 0  322165  322173  322179  322183  322189  322191  322195  322201  322203  322209  322215  322219  322221  322225  322231  322233  322239  322243  322245  322249  322251  322255  322257  322259  322260  322261  322263  322264  322265  322267  322269  322273  322275  322279  322281  322285  322291  322293  322299  322303  322305  322309  322315  322321  322323  322329  322333  322335  322341  322345  322351  322359  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网