如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m,建立如图所示的直角坐标系,则此抛物线的解析式为___________.
![]()
如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-
(x-4)2+3,由此可知铅球推出的距离是___________.
![]()
若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= .
已知抛物线y=x2-mx+m-2.
(1)求证此抛物线与x轴有两个交点;
(2)若抛物线与x轴的一个交点为(2,0),求m的值及抛物线与x轴另一交点坐标.
今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.
![]()
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-
(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
![]()
抛物线y=
x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.
(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
![]()
在下列y关于x的函数中,一定是二次函数的是( )
A. y=2x2 B. y=2x﹣2 C. y=ax2 D. ![]()
已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是( )
A. x≥1 B. x≥0 C. x≥﹣1 D. x≥﹣2
下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是( )
A. y=4x2+2x+1 B. y=2x2﹣4x+1 C. y=2x2﹣x+4 D. y=x2﹣4x+2