如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m,建立如图所示的直角坐标系,则此抛物线的解析式为___________.

y=-x2 【解析】【解析】 设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10.设点B(10,n),点D(5,n+3),由题意得: ,解得: ,∴. 故答案为: .

如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是___________.

10 【解析】【解析】 在中,令y=0,得,解得:x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.

若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=   

9 【解析】 分析:∵抛物线y=x2+bx+cx轴只有一个交点,∴当时,y=0.且b2﹣4c=0,即b2=4c. 又∵点A(m,n),B(m+6,n),∴点A、B关于直线对称。 ∴A(,n),B(,n)。 将A点坐标代入抛物线解析式,得:。

已知抛物线y=x2-mx+m-2.

(1)求证此抛物线与x轴有两个交点;

(2)若抛物线与x轴的一个交点为(2,0),求m的值及抛物线与x轴另一交点坐标.

(1)证明见解析(2)抛物线与x轴另一交点坐标为(0,0) 【解析】试题分析:(1)欲证明抛物线与x轴有两个不同的交点,只要证明△>0即可. (2)把(2,0)代入抛物线解析式,即可得到m的值,从而得到抛物线的解析式,令y=0,解方程即可得到结论. 试题解析:【解析】 (1)∵Δ=(-m)2-4(m-2)=m2-4m+8=(m-2)2+4>0, ∴此抛物线与x轴有两个交点. ...

今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.

(1)当定价为4元时,能实现每天800元的销售利润(2)当定价为4.8元时,每天的销售利润最大. 【解析】试题分析:(1)小华的问题要用一元二次方程来解决,解答的关键是弄清:设实现每天800元利润的定价为x元/个时,每一个粽子的利润为(x-2)元,一共能卖(500-×10)个粽子,根据题意列方程得:(x-2)(500-×10)=800,解得x1=4,x2=6,还应根据实际问题确定两个值是否都...

如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.

(1)求抛物线的解析式;

(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=- (t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

(1)y=-x2+11(2)禁止船只通行时间为32小时. 【解析】二次函数的应用,待定系数法,曲线上点的坐标与方程的关系。 (1)根据抛物线特点设出二次函数解析式,把B坐标代入即可求解。 (2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,把6代入所给二次函数关系式,求得t的值,相减即可得到禁止船只通行的时间。

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...

在下列y关于x的函数中,一定是二次函数的是(  )

A. y=2x2 B. y=2x﹣2 C. y=ax2 D.

A 【解析】解:A.是二次函数,故A符合题意; B.是一次函数,故B错误; C.a=0时,不是二次函数,故C错误; D.a≠0时是分式方程,故D错误; 故选A.

已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是(  )

A. x≥1 B. x≥0 C. x≥﹣1 D. x≥﹣2

A 【解析】【解析】 ∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小.故选A.

下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是(  )

A. y=4x2+2x+1 B. y=2x2﹣4x+1 C. y=2x2﹣x+4 D. y=x2﹣4x+2

B 【解析】【解析】 抛物线y=x2﹣2x+4的对称轴为x=1; A、y=4x2+2x+1的对称轴为x=﹣,不符合题意; B、y=2x2﹣4x+1的对称轴为x=1,符合题意; C、y=2x2﹣x+4的对称轴为x=,不符合题意; D、y=x2﹣4x+2的对称轴为x=2,不符合题意; 故选B.
 0  322142  322150  322156  322160  322166  322168  322172  322178  322180  322186  322192  322196  322198  322202  322208  322210  322216  322220  322222  322226  322228  322232  322234  322236  322237  322238  322240  322241  322242  322244  322246  322250  322252  322256  322258  322262  322268  322270  322276  322280  322282  322286  322292  322298  322300  322306  322310  322312  322318  322322  322328  322336  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网