题目内容

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...
练习册系列答案
相关题目

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...

如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )

A. 3cm B. 4cm C. 5cm D. 8cm

B 【解析】试题解析:∵?ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm. 故选B.

二次函数y=ax2+bx+c的图象如图11所示,且P=|2a+b|+|3b-2c|,Q=|2a-b|-|3b+2c|,则P,Q的大小关系是______.

P>Q 【解析】∵抛物线的开口向下, ∴a<0, ∵ ∴b>0, ∴2a-b<0, ∵ ∴b+2a=0, x=-1时,y=a-b+c<0. ∴ ∴3b-2c>0, ∵抛物线与y轴的正半轴相交, ∴c>0, ∴3b+2c>0, ∴P=3b-2c, Q=b-2a-3b-2c=-2a-2b-2c, ∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-...

在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

C 【解析】【解析】 ①∵a>0、c>0,∴该抛物线开口方向向上,且与y轴交于正半轴; ②∵a>0,b<0,∴二次函数y=ax2+bx+c的函数图象的对称轴是x=﹣>0,∴二次函数y=ax2+bx+c的函数图象的对称轴在第一象限; 综合①②,二次函数y=ax2+bx+c的图象一定不经过第三象限. 故选C.

如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是___________.

10 【解析】【解析】 在中,令y=0,得,解得:x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )

A.图象关于直线x=1对称

B.函数y=ax2+bx+c(a≠0)的最小值是﹣4

C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根

D.当x<1时,y随x的增大而增大

D 【解析】 试题分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断. 【解析】 A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意; B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意; C、...

“抛一枚均匀硬币,落地后正面朝上”这一事件是(  )

A. 必然事件 B. 随机事件 C. 确定事件 D. 不可能事件

B 【解析】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断: 抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件. 故选B.

一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是(  )

①对应线段平行

②对应线段相等

③图形的形状和大小都没有发生变化

④对应角相等.

A. ①②③ B. ②③④ C. ①②④ D. ①③④

B 【解析】【解析】 ①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误; ②无论平移还是旋转,对应线段相等,故本小题正确; ③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确; ④无论平移还是旋转,对应角相等,故本小题正确. 综上所述,说法正确的是②③④. 故选B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网