题目内容

若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=   

9 【解析】 分析:∵抛物线y=x2+bx+cx轴只有一个交点,∴当时,y=0.且b2﹣4c=0,即b2=4c. 又∵点A(m,n),B(m+6,n),∴点A、B关于直线对称。 ∴A(,n),B(,n)。 将A点坐标代入抛物线解析式,得:。
练习册系列答案
相关题目

如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.

14. 【解析】 试题分析:∵D、E分别AB、BC的中点,∴AD=AB,DE=AC.同理AF=AC,EF=AB.∴l四边形ADEF=AD+DE+EF+AF=(AB+AC+AB+AC)=AB+AC=14cm.

抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中,错误的是( )

A. 抛物线于x轴的一个交点坐标为(﹣2,0)

B. 抛物线与y轴的交点坐标为(0,6)

C. 抛物线的对称轴是直线x=0

D. 抛物线在对称轴左侧部分是上升的

C 【解析】【解析】 当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确; 当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确; 当x=0和x=1时,y=6,∴对称轴为x=,故C错误; 当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确; 故选C.

在下列y关于x的函数中,一定是二次函数的是(  )

A. y=2x2 B. y=2x﹣2 C. y=ax2 D.

A 【解析】解:A.是二次函数,故A符合题意; B.是一次函数,故B错误; C.a=0时,不是二次函数,故C错误; D.a≠0时是分式方程,故D错误; 故选A.

如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是( )

A. 5个 B. 4个 C. 3个 D. 2个

B 【解析】由抛物线的对称轴x=-在y轴右侧,可以判定a、b异号,由此确定①正确; 由抛物线与x轴有两个交点得到b2-4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确; 由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确; 由抛物线过点(-1,0),得出a-b+c=0,即a=b-1,由a<0得出...

世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分.

(1)求每小组共比赛多少场?

(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?

(1)6;(2)该队出线是一个不确定事件; 【解析】试题分析:(1)利用单循环的方法进行计算即可. (2)根据必然事件、不可能事件、随机事件的概念可区别各类事件. 试题解析:(1)4×3÷2 =6(场) 答:每小组共比赛6场。 (2)因为总共有6场比赛,每场比赛最多可得3分,则6场比赛最多共有3×6=18分,现有一队得6分,还剩下12分,则还有可能有2个队同时得6分,...

下列事件中,属于必然事件的是(  )

A. 打开电视,正在播放《新闻联播》 B. 抛掷一次硬币正面朝上

C. 袋中有3个红球,从中摸出一球是红球 D. 阴天一定下雨

C 【解析】试题解析:A.打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容; B.抛掷一次硬币正面朝上是随机事件,也可能反面朝上; C. 袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球; D.阴天一定下雨是随机事件,也可能只阴天不下雨. 故选C.

如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F

(1)求b,c的值及D点的坐标;

(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;

(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.

(1)b=,c=2;D点坐标为(3,0).(2)点E在OC上运动时,四边形OEBF的面积不变;(3)当m=2﹣时S最小为0. 【解析】 试题分析:(1)把点A,B代入抛物线y=x2+bx+c求得b、c即可,y=0,建立方程求得点D; (2)四边形OEBF的面积不变,利用三角形全等证得结论即可; (3)用m分别表示出两个三角形的面积,求差探讨得出答案即可. 试题解析:(...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网