已知二次函数y=x2+2x﹣3,
(1)用描点法画出y=x2+2x﹣3的图象.
(2)根据你所画的图象回答问题:当x 时,函数值y随x的增大而增大,当x 时,函数值y随x的增大而减小.
【解析】列表得:
X
Y
描点、连线
在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.
(1)你认为小强的结果对吗?请说明理由.
(2)请你帮助小颖求出图中的x.
(3)你还有其他的设计方案吗?请在图(3)中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.
某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威.可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.
(1)请你给出不同的租车方案(至少三种);
(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由.
如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.
改革开放以来,我国国民经济保持良好发展势头,国内生产总值持续较快增长, 下图是1998年~2002年国内生产总值统计图.
(1)从图中可看出1999年国内生产总值是___________.
(2)已知2002年国内生产总值比2000年增加12956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留两个有效数字).
如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;
(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?
(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)
已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合)
(1)如图,当PQ∥AC,且Q为BC的中点时,求线段CP的长;
(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由.
能判定一个四边形是菱形的条件是( )
A. 对角线相等且互相垂直 B. 对角线相等且互相平分
C. 对角线互相垂直 D. 对角线互相垂直平分
下列命题是假命题的是( )
A. 平行四边形的对边相等 B. 四条边都相等的四边形是菱形
C. 矩形的两条对角线互相垂直 D. 等腰梯形的两条对角线相等
下列几组数据能作为直角三角形的三边长的是( )
A. 2,3,4 B. 5,3,4 C. 4,6,9 D. 5,11,13