20.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答
习题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解:
∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°-45°=45°=∠EAF.
又∵AE′=AE,AF=AF
∴△AE′FF≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究.
观察分析:
观察图1,由解答可知,该题有用的条件是①.ABCD是四边形,点E、F分别在边BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=$\frac{1}{2}$∠BAD.
类比猜想:
在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
要解决上述问题,可从特例入手,请同学们思考:如图2,在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?试证明.
(2)在四边形ABCD中,点E、F分别在边BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,还有EF=BE+DF吗?使用图3证明.
归纳概括:
反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,EF=BE+DF.
 0  283331  283339  283345  283349  283355  283357  283361  283367  283369  283375  283381  283385  283387  283391  283397  283399  283405  283409  283411  283415  283417  283421  283423  283425  283426  283427  283429  283430  283431  283433  283435  283439  283441  283445  283447  283451  283457  283459  283465  283469  283471  283475  283481  283487  283489  283495  283499  283501  283507  283511  283517  283525  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网