ÌâÄ¿ÄÚÈÝ
20£®³«µ¼Ñо¿ÐÔѧϰ·½Ê½£¬×ÅÁ¦½Ì²ÄÑо¿£¬Ï°ÌâÑо¿£¬ÊÇѧÉúÌø³öÌ⺣£¬Ìá¸ßѧϰÄÜÁ¦ºÍ´´ÐÂÄÜÁ¦µÄÓÐЧ;¾¶£®ÏÂÃæÊÇÒ»°¸Àý£¬ÇëͬѧÃÇÈÏÕæÔĶÁ¡¢Ñо¿£¬Íê³É¡°Àà±È²ÂÏ롱¼°ºóÃæµÄÎÊÌ⣮ϰÌâ½â´ð
ϰÌ⣺Èçͼ1£¬µãE¡¢F·Ö±ðÔÚÕý·½ÐÎABCDµÄ±ßBC¡¢CDÉÏ£¬¡ÏEAF=45¡ã£¬Á¬½ÓEF£¬ÔòEF=BE+DF£¬ËµÃ÷ÀíÓÉ£®
½â£º
¡ßÕý·½ÐÎABCDÖУ¬AB=AD£¬¡ÏBAD=¡ÏADC=90¡ã
¡à°Ñ¡÷ABEÈÆµãAÄæÊ±ÕëÐýת90¡ãÖÁ¡÷ADE¡ä£¬µãF¡¢D¡¢E¡äÔÚÒ»ÌõÖ±ÏßÉÏ£®
¡à¡ÏE¡äAF=90¡ã-45¡ã=45¡ã=¡ÏEAF£®
ÓÖ¡ßAE¡ä=AE£¬AF=AF
¡à¡÷AE¡äFF¡Õ¡÷AEF£¨SAS£©
¡àEF=E¡äF=DE¡ä+DF=BE+DF£®
ϰÌâÑо¿£®
¹Û²ì·ÖÎö£º
¹Û²ìͼ1£¬Óɽâ´ð¿ÉÖª£¬¸ÃÌâÓÐÓõÄÌõ¼þÊÇ¢Ù£®ABCDÊÇËıßÐΣ¬µãE¡¢F·Ö±ðÔÚ±ßBC¡¢CDÉÏ£»¢Ú£®AB=AD£»¢Û£®¡ÏB=¡ÏD=90¡ã¡Ï£»¢Ü£®¡ÏEAF=$\frac{1}{2}$¡ÏBAD£®
Àà±È²ÂÏ룺
ÔÚËıßÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚBC¡¢CDÉÏ£¬µ±AB=AD£¬¡ÏB=¡ÏDʱ£¬»¹ÓÐEF=BE+DFÂð£¿
Òª½â¾öÉÏÊöÎÊÌ⣬¿É´ÓÌØÀýÈëÊÖ£¬ÇëͬѧÃÇ˼¿¼£ºÈçͼ2£¬ÔÚÁâÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚBC¡¢CDÉÏ£¬µ±¡ÏBAD=120¡ã£¬¡ÏEAF=60¡ãʱ£¬»¹ÓÐEF=BE+DFÂð£¿ÊÔÖ¤Ã÷£®
£¨2£©ÔÚËıßÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚ±ßBC¡¢CDÉÏ£¬µ±AB=AD£¬¡ÏB+¡ÏD=180¡ã£¬¡ÏEAF=$\frac{1}{2}$¡ÏBADʱ£¬»¹ÓÐEF=BE+DFÂð£¿Ê¹ÓÃͼ3Ö¤Ã÷£®
¹éÄɸÅÀ¨£º
·´Ë¼Ç°ÃæµÄ½â´ð£¬Ë¼¿¼Ã¿¸öÌõ¼þµÄ×÷Ó㬿ÉÒԵõ½Ò»¸ö½áÂÛ¡°EF=BE+DF¡±µÄÒ»°ãÃüÌ⣺ÔÚËıßÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚBC¡¢CDÉÏ£¬µ±AB=AD£¬¡ÏB+¡ÏD=180¡ã£¬¡ÏEAF=$\frac{1}{2}$¡ÏBADʱ£¬EF=BE+DF£®
·ÖÎö £¨1£©°Ñ¡÷ABEÈÆµãAÄæÊ±ÕëÐýת120¡ãÖÁ¡÷ADE¡ä£¬Èçͼ£¨2£©£¬Á¬½áE¡äF£¬¸ù¾ÝÁâÐκÍÐýתµÄÐÔÖʵõ½AE=AE¡ä£¬¡ÏEAF=¡ÏE¡äAF£¬ÀûÓá°SAS¡±Ö¤Ã÷¡÷AEF¡Õ¡÷AE¡äF£¬µÃµ½EF=E¡äF£»ÓÉÓÚ¡ÏADE¡ä+¡ÏADC=120¡ã£¬ÔòµãF¡¢D¡¢E¡ä²»¹²Ïߣ¬ËùÒÔDE¡ä+DF£¾EF£¬¼´ÓÉBE+DF£¾EF£»
£¨2£©°Ñ¡÷ABEÈÆµãAÄæÊ±ÕëÐýת¡ÏBADµÄ¶ÈÊýÖÁ¡÷ADE¡ä£¬Èçͼ£¨3£©£¬¸ù¾ÝÐýתµÄÐÔÖʵõ½AE¡ä=AE£¬¡ÏEAF=¡ÏE¡äAF£¬È»ºóÀûÓá°SAS¡±Ö¤Ã÷¡÷AEF¡Õ¡÷AE¡äF£¬µÃµ½EF=E¡äF£¬ÓÉÓÚ¡ÏADE¡ä+¡ÏADC=180¡ã£¬ÖªF¡¢D¡¢E¡ä¹²Ïߣ¬Òò´ËÓÐEF=DE¡ä+DF=BE+DF£»¸ù¾ÝÇ°ÃæµÄÌõ¼þºÍ½áÂۿɹéÄɳö½áÂÛ£®
½â´ð ½â£º£¨1£©Èçͼ£¨2£©£¬![]()
µ±¡ÏBAD=120¡ã£¬¡ÏEAF=60¡ãʱ£¬EF=BE+DF²»³ÉÁ¢£¬EF£¼BE+DF£®
ÀíÓÉÈçÏ£º
¡ßÔÚÁâÐÎABCDÖУ¬¡ÏBAD=120¡ã£¬¡ÏEAF=60¡ã£¬
¡àAB=AD£¬¡Ï1+¡Ï2=60¡ã£¬¡ÏB=¡ÏADC=60¡ã£¬
¡à°Ñ¡÷ABEÈÆµãAÄæÊ±ÕëÐýת120¡ãÖÁ¡÷ADE¡ä£¬Èçͼ£¨2£©£¬Á¬½áE¡äF£¬
¡à¡ÏEAE¡ä=120¡ã£¬¡Ï1=¡Ï3£¬AE¡ä=AE£¬DE¡ä=BE£¬¡ÏADE¡ä=¡ÏB=60¡ã£¬
¡à¡Ï2+¡Ï3=60¡ã£¬
¡à¡ÏEAF=¡ÏE¡äAF£¬
ÔÚ¡÷AEFºÍ¡÷AE¡äFÖÐ
$\left\{\begin{array}{l}{AE=AE¡ä}\\{¡ÏEAF=¡ÏE¡äAF}\\{AF=AF}\end{array}\right.$£¬
¡à¡÷AEF¡Õ¡÷AE¡äF£¨SAS£©£¬
¡àEF=E¡äF£¬
¡ß¡ÏADE¡ä+¡ÏADC=120¡ã£¬¼´µãF¡¢D¡¢E¡ä²»¹²Ïߣ¬
¡àDE¡ä+DF£¾EF
¡àBE+DF£¾EF£»
£¨2£©µ±AB=AD£¬¡ÏB+¡ÏD=180¡ã£¬¡ÏEAF=$\frac{1}{2}$¡ÏBADʱ£¬EF=BE+DF³ÉÁ¢£®
ÀíÓÉÈçÏ£ºÈçͼ£¨3£©£¬![]()
¡ßAB=AD£¬
¡à°Ñ¡÷ABEÈÆµãAÄæÊ±ÕëÐýת¡ÏBADµÄ¶ÈÊýÖÁ¡÷ADE¡ä£¬Èçͼ£¨3£©£¬
¡à¡ÏEAE¡ä=¡ÏBAD£¬¡Ï1=¡Ï3£¬AE¡ä=AE£¬DE¡ä=BE£¬¡ÏADE¡ä=¡ÏB£¬
¡ß¡ÏB+¡ÏD=180¡ã£¬
¡à¡ÏADE¡ä+¡ÏD=180¡ã£¬
¡àµãF¡¢D¡¢E¡ä¹²Ïߣ¬
¡ß¡ÏEAF=$\frac{1}{2}$¡ÏBAD£¬
¡à¡Ï1+¡Ï2=$\frac{1}{2}$¡ÏBAD£¬
¡à¡Ï2+¡Ï3=$\frac{1}{2}$¡ÏBAD£¬
¡à¡ÏEAF=¡ÏE¡äAF£¬
ÔÚ¡÷AEFºÍ¡÷AE¡äFÖÐ
$\left\{\begin{array}{l}{AE=AE¡ä}\\{¡ÏEAF=¡ÏE¡äAF}\\{AF=AF}\end{array}\right.$£¬
¡à¡÷AEF¡Õ¡÷AE¡äF£¨SAS£©£¬
¡àEF=E¡äF£¬
¡àEF=DE¡ä+DF=BE+DF£»
µãÆÀ ±¾ÌâÊǼ¸ºÎ±ä»»×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕÌØÊâÆ½ÐÐËıßÐεÄÐÔÖʺÍÐýתµÄÐÔÖÊ£»»áÔËÓÃÈý½ÇÐÎÈ«µÈµÄÅж¨ÓëÐÔÖʽâ¾öÏß¶ÎÏàµÈµÄÎÊÌ⣮
| A£® | 57¡ã | B£® | 53¡ã | C£® | 47¡ã | D£® | 43¡ã |
| A£® | 2¸ö | B£® | 3¸ö | C£® | 4¸ö | D£® | 5¸ö |
| A£® | b£¼0 | B£® | b£¾0 | C£® | b£¾-1 | D£® | b£¼-1 |