11.(1)问题背景:
如图(1),在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°,探索EF,BE,FD的数量关系,王岩和张放两位同学探索的思路虽然不尽相同,但都得出了正确的结论.
     王岩是这样想的:把△ABE绕着点A逆时针旋转到使AB与AD重合,得△ADG,并确定点F,D,G在一条直线上,再证明△AEF≌AGF…
     张放是这样想的:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,△AEF≌△AGF…
他们得出的结论是EF=BE+DF.
(2)探索延伸:
如图(2),若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,(1)中的结论是否仍然成立?并说明理由;
(3)实际应用:
如图(3),在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心(O处)南偏东70°的B处,并且两舰艇到指挥中心的距离都是90海里,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,同时,舰艇乙沿着射线BM的方向(∠OBF=120°),以14海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且舰艇乙在指挥中心南偏东80°,试问,两舰艇E,F之间的距离是否符合(2)的条件?如果符合,请求出两舰艇之间的距离(画出辅助线);如果不符合,请说明理由.
 0  282675  282683  282689  282693  282699  282701  282705  282711  282713  282719  282725  282729  282731  282735  282741  282743  282749  282753  282755  282759  282761  282765  282767  282769  282770  282771  282773  282774  282775  282777  282779  282783  282785  282789  282791  282795  282801  282803  282809  282813  282815  282819  282825  282831  282833  282839  282843  282845  282851  282855  282861  282869  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网