1.值得探究的“叠放”!

问题提出:把八个一样大小的正方形(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?
第一步,取两个正方体叠放成一个长方体(如图①),由此可知,新长方体的长、宽、高分别为1,1,2.
第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.
第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图③),该正方体的长、宽、高分别为2,2,2.
这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.
仔细阅读上述文字,利用其中思想方法解决下列问题:
(1)如图④,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)
(2)取如图④的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?
(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图⑤,此时,形成一个新的长方体表面积最小,求c的取值范围.
 0  281008  281016  281022  281026  281032  281034  281038  281044  281046  281052  281058  281062  281064  281068  281074  281076  281082  281086  281088  281092  281094  281098  281100  281102  281103  281104  281106  281107  281108  281110  281112  281116  281118  281122  281124  281128  281134  281136  281142  281146  281148  281152  281158  281164  281166  281172  281176  281178  281184  281188  281194  281202  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网