ÌâÄ¿ÄÚÈÝ
7£®£¨1£©Ð´³öÊýÖáÉϵãB±íʾµÄÊýΪ-4£¬¾tÃëºóµãP×ß¹ýµÄ·³ÌΪ6t£¨Óú¬tµÄ´úÊýʽ±íʾ£©£»
£¨2£©ÈôÔÚ¶¯µãPÔ˶¯µÄͬʱÁíÒ»¶¯µãQ´ÓµãBÒ²³ö·¢£¬²¢ÒÔÿÃë4¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÊýÖáÏò×óÔÈËÙÔ˶¯£¬Îʾ¶àÉÙʱ¼äµãP¾ÍÄÜ×·ÉϵãQ£¿
£¨3£©ÈôMΪAPµÄÖе㣬NΪBPµÄÖе㣬µãPÔÚÔ˶¯µÄ¹ý³ÌÖУ¬Ïß¶ÎMNµÄ³¤¶ÈÊÇ·ñ·¢Éú±ä»¯£¿Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£»Èô²»±ä£¬ÇëÄ㻳öͼÐΣ¬²¢Çó³öÏß¶ÎMNµÄ³¤£®
·ÖÎö £¨1£©Éè³öBµã±íʾµÄÊýΪx£¬ÓÉÊýÖáÉÏÁ½µã¼äµÄ¾àÀë¼´¿ÉµÃµ½xµÄ·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³öx£¬ÓÉ·³Ì=ËÙ¶È¡Áʱ¼ä¿ÉµÃ³öµãP×ß¹ýµÄ·³Ì£»
£¨2£©Éè¾tÃëºóPµã×·ÉÏQµã£¬¸ù¾ÝÌâÒâ¿ÉµÃ£¬¹ØÓÚtµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³öʱ¼ät£»
£¨3£©ÓÉPµãλÖõIJ»Í¬·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£¬ÒÀ¾ÝÖеãµÄ¶¨Ò壬¿ÉÒÔÕÒµ½Ï߶μäµÄ¹ØÏµ£¬´Ó¶øÄÜÕÒ³öMNµÄ³¤¶È£®
½â´ð ½â£º£¨1£©ÉèBµã±íʾx£¬ÔòÓÐ
AB=8-x=12£¬½âµÃx=-4£®
¡ß¶¯µãP´ÓµãA³ö·¢£¬ÒÔÿÃë6¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÊýÖáÏò×óÔÈËÙÔ˶¯£¬
¡à¾tÃëºóµãP×ß¹ýµÄ·³ÌΪ6t£®
¹Ê´ð°¸Îª£º-4£»6t£®
£¨2£©Éè¾tÃëºóPµã×·ÉÏQµã£¬¸ù¾ÝÌâÒâµÃ£º
6t-4t=12£¬
½âµÃt=6£®
´ð£º¾¹ý6Ãëʱ¼äµãP¾ÍÄÜ×·ÉϵãQ£®
£¨3£©²»ÂÛPµãÔ˶¯µ½ÄÄÀÏß¶ÎMN¶¼µÈÓÚ6£®
·ÖÁ½ÖÖÇé¿ö·ÖÎö£º
¢ÙµãPÔÚÏß¶ÎABÉÏʱ£¬Èçͼ1£¬![]()
MN=PM+PN=$\frac{1}{2}$PA+$\frac{1}{2}$PB=$\frac{1}{2}$£¨PA+PB£©=$\frac{1}{2}$AB=$\frac{1}{2}$¡Á12=6£»
¢ÚµãPÔÚÏß¶ÎABµÄÑÓ³¤ÏßÉÏʱ£¬Èçͼ2£¬![]()
MN=PM-PN=$\frac{1}{2}$PA-$\frac{1}{2}$PB=$\frac{1}{2}$£¨PA-PB£©=$\frac{1}{2}$AB=$\frac{1}{2}$¡Á12=6£®
×ÛÉÏ¿ÉÖª£¬²»ÂÛPÔ˶¯µ½ÄÄÀÏß¶ÎMNµÄ³¤¶È¶¼²»±ä£¬¶¼µÈÓÚ6£®
µãÆÀ ±¾Ì⿼²éÁËÊýÖá¡¢ÖеãÒÀ¾Ý½âÒ»ÔªÒ»´Î·½³Ì£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³ö¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£»£¨2£©ÕÒ³ö¹ØÓÚʱ¼ätµÄÒ»ÔªÒ»´Î·½³Ì£»£¨3£©ÓÉÖе㶨ÒåÕÒµ½Ï߶μäµÄ¹ØÏµ£®
| A£® | 5¸ö | B£® | 6¸ö | C£® | 7¸ö | D£® | ÎÞÊý¸ö |
| A£® | 3$\sqrt{3}$ | B£® | 5 | C£® | 6 | D£® | 4$\sqrt{2}$ |
| A£® | $1£»2\sqrt{3}+3£»\frac{{2\sqrt{3}+1}}{11}$ | B£® | $1£»2\sqrt{3}+3£»\frac{{2\sqrt{3}+1}}{13}$ | C£® | $1£»2\sqrt{3}+3$£»5 | D£® | ÒÔÉ϶¼²»¶Ô |