在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为( )
A.8,3 B.8,6 C.4,3 D.4,6
下列说法中,正确的是( )
A.同一条弦所对的两条弧一定是等弧
B.长度相等的两条弧是等弧
C.两条直线被一组平行线所截,所得的对应线段成比例
D.三角形的外心到三角形各边的距离相等
在等腰三角形中,有两条边的长度是方程x2﹣9x+18=0的根,那么它的周长是( )
A.12 B.15 C.12或15 D.9
用配方法解方程x2﹣2x﹣2=0时,原方程应变形为( )
A.(x+1)2=3 B.(x+2)2=6 C.(x﹣1)2=3 D.(x﹣2)2=6
如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.
(1)若m=3,则点B的坐标为 ;若m=﹣3,则点B的坐标为 ;
(2)若m>0,△BCD的面积为S,则m为何值时,S=6?
(3)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时t的值;若不存在,请说明理由.
某批发商以40元/千克的成本价购入了某产品700千克,据市场预测,该产品的销售价y(元/千克)与保存时间x(天)的函数关系为y=50+2x,但保存这批产品平均每天将损耗15千克,且最多保存15天.另外,批发商每天保存该批产品的费用为50元.
(1)若批发商在保存该产品5天时一次性卖出,则可获利 9250 元.
(2)如果批发商希望通过这批产品卖出获利10000元,则批发商应在保存该产品多少天时一次性卖出?
已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
已知函数y=mx2﹣6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.
(1)求证:AE•BC=BD•AC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.