题目内容


已知函数y=mx2﹣6x+1(m是常数).

(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;

(2)若该函数的图象与x轴只有一个交点,求m的值.

 


考点: 抛物线与x轴的交点;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征. 

专题: 计算题.

分析: (1)根据解析式可知,当x=0时,与m值无关,故可知不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1).

(2)应分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;

②当函数为二次函数时,利用根与系数的关系解答.

解答: 解:(1)当x=0时,y=1.

所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);

(2)①当m=0时,函数y=mx2﹣6x+1的图象与x轴只有一个交点;

②当m≠0时,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根,

所以△=(﹣6)2﹣4m=0,m=9.

综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9.

点评: 此题考查了抛物线与x轴的交点或一次函数与x轴的交点,是典型的分类讨论思想的应用.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网