如图,将矩形ABCD沿MN折叠,使点B与点D重合.
(1)求证:DM=DN;
(2)当AB和AD满足什么数量关系时,△DMN是等边三角形?并说明你的理由.
如图是6×8的正方形网格,△ABC的顶点都在格点上,M、N也在格点上.
(1)画出△ABC关于直线MN的轴对称图形△A′B′C′,使A、B、C的对称点分别是A′、B′、C′;
(2)连接BA′交MN于D,交AC于E,求AE:CE;
(3)连接DB′交A′C′于点F,若每个小正方形的边长为1.求△B′C′F的面积.
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣2,1),C(﹣2,4).
(1)画出△ABC沿着y轴向下平移5个单位得到的△A1B1C1,并直接写出点C的对应点C1的坐标;
(2)画出△ABC关于y轴对称的△AB2C2,并直接写出点C的对应点C2的坐标.
如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为 .
考点: 翻折变换(折叠问题).
专题: 计算题.
如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是 .
如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是 cm.
如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为 .
如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为 .
如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 .
下列说法正确的是( )
A. 4的平方根是2
B. 将点(﹣2,﹣3)向右平移5个单位长度到点(﹣2,2)
C. 2是无理数
D. 点(﹣2,﹣3)关于x轴的对称点是(﹣2,3)