题目内容
如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为 .
![]()
解:BC=
=4,
由折叠的性质得:BE=BE′,AB=AB′,
设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,
在Rt△B′EC中,B′E2+B′C2=EC2,
即x2+22=(4﹣x)2,
解得:x=
.
练习册系列答案
相关题目
题目内容
如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为 .
![]()
解:BC=
=4,
由折叠的性质得:BE=BE′,AB=AB′,
设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,
在Rt△B′EC中,B′E2+B′C2=EC2,
即x2+22=(4﹣x)2,
解得:x=
.