题目内容
如图,将矩形ABCD沿MN折叠,使点B与点D重合.
(1)求证:DM=DN;
(2)当AB和AD满足什么数量关系时,△DMN是等边三角形?并说明你的理由.
![]()
(1)证明:由题意知∠1=∠2,
又AB∥CD,得∠1=∠3,
则∠2=∠3.
故DM=DN;
(2)解:当AB=
AD时,△DMN是等边三角形.
证明:连接BD.
∵∠A=90°,AB=
AD,
∴tan∠ABD=![]()
=
,
∴∠ABD=30°.
∵BM=MD,
∴∠ABD=∠MDB=30°,
∴∠BMD=120°.
∴∠1=∠2=60°.
又DM=DN,
∴△DMN是等边三角形.
![]()
练习册系列答案
相关题目