请阅读下列材料:
实际问题:如图(1),一圆柱的底面半径为5厘米,BC是底面直径,高AB为5厘米,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线.
解决方案:
路线1:侧面展开图中的线段AC,如图(2)所示,设路线l的长度为l1:则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC,如图(1)所示.
设路线2的长度为l2:则l2=AB+BC=5+10=15,l22=225.
为比较l1,l2的大小,我们采用如下方法:
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0.
∴l12>l22,所以l1>l2
小明认为应选择路线2较短.
(1)问题类比:
小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1厘米,高AB为5厘米.”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=
 

路线2:l2=AB+BC=
 
,l22=
 

∵l12
 
l22,∴l1
 
l2(填“>”或“<”)
∴小亮认为应选择路线
 
(填1或2)较短.
(2)问题拓展:
请你帮小明和小亮继续研究:在一般情况下,当圆柱的底面半径为r厘米时,高为h厘米,蚂蚁从A点出发沿圆柱表面爬行到点C,
路线1:l12=
 

路线2:l22=
 

r
h
满足什么条件时,选择的路2最短?请说明理由.
(3)问题解决:
如图(3)为2个相同的圆柱紧密排列在一起,高为5厘米,当圆柱的底面半径r(厘米)=
 
时,蚂蚁从点A出发沿圆柱表面爬行到C点的两条线段相等(注:按上面小明所设计的两条路线方式).
 0  261653  261661  261667  261671  261677  261679  261683  261689  261691  261697  261703  261707  261709  261713  261719  261721  261727  261731  261733  261737  261739  261743  261745  261747  261748  261749  261751  261752  261753  261755  261757  261761  261763  261767  261769  261773  261779  261781  261787  261791  261793  261797  261803  261809  261811  261817  261821  261823  261829  261833  261839  261847  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网