数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1到21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同的取法?
为了找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种不同的取法?
根据题意,有下列取法:1+42+3,2+43+2,3+44+1,4+2,4+3;而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3
2
=4=
42
4
种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同的取法?
根据题意,有下列取法: 1+52+4,2+53+4,3+54+2,4+3,4+55+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3+4
2
=6=
52-1
4
种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+62+5,2+63+4,3+5,3+64+3,4+5,4+65+2,5+3,5+4,5+66+1,6+2,6+3,6+4,6+5;而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有 
1+2+3+3+4+5
2
=9=
62
4
 种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种不同的取法?
根据题意,有下列取法:1+72+6,2+73+5,3+6,3+74+5,4+6,4+75+3,5+4,5+6,5+76+2,6+3,6+4,6+5,6+77+1,7+2,7+3,7+4,7+5,7+6;而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5+6
2
=12=
72-1
4
种不同的取法…
问题解决:
依照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有
 
种不同的取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,有
 
种不同的取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,有
 
种不同的取法;(只填最简算式)
(4)各边长都是整数,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)
问题拓展:
(5)在1~100这100个自然数中,每次取两个不同的数,使得所取的两个数之和大于100,有
 
种不同的取法;(只填结果)
(6)各边长都是整数,最大边长为11的三角形有多少个?(写出最简算式和结果,不写分析过程)
(7)各边长都是整数,最大边长为31的三角形有多少个?(写出最简算式和结果,不写分析过程)
 0  257440  257448  257454  257458  257464  257466  257470  257476  257478  257484  257490  257494  257496  257500  257506  257508  257514  257518  257520  257524  257526  257530  257532  257534  257535  257536  257538  257539  257540  257542  257544  257548  257550  257554  257556  257560  257566  257568  257574  257578  257580  257584  257590  257596  257598  257604  257608  257610  257616  257620  257626  257634  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网