题目内容

20.已知直角梯形的一条底边长为8,一条腰长为3$\sqrt{2}$,且它与底边的夹角是45°,那么另一条底边的长为5或11.

分析 分两种情形:①当AB与下底的夹角为45°时(上图),②下图中,当∠A=45°,AB=3$\sqrt{2}$,BC=8时,分别求解即可.

解答 解:①当AB与下底的夹角为45°时(上图),作AM⊥BC于M.则四边形AMCD是矩形,
∵AB=3$\sqrt{2}$,易知AM=BM=3,
∴AD=CM=BC-BM=5.
②下图中,当∠A=45°,AB=3$\sqrt{2}$,BC=8时,同法可得AD=AM+DM=3+8=11,
故答案为5或11.

点评 本题考查直角梯形的性质,等腰直角三角形的性质,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,把直角梯形转化为直角三角形和矩形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网