题目内容

下列各组条件中,能判断两个直角三角形全等的是( )

A. 一组边对应相等 B. 两组直角边对应相等

C. 两组锐角对应相等 D. 一组锐角对应相等

B 【解析】A、两直角三角形隐含一个条件是两直角相等,现已知一组边对应相等 ,要判定两直角三角形全等,还需要一组角对应相等地或是另一组边对应相等才能进行判定,故选项错误; B、可以利用边角边判定两三角形全等,故本选项正确; C、两个锐角分别相等,只有角没有边,不能判定全等,此选项错误; D、一组锐角对应相等,隐含一个条件是两直角相等,根据角对应相等,不能判定三角形全等,故选...
练习册系列答案
相关题目

如下图所示,判断各组中的两个图形是否是全等图形.

A.

B.

C.

D.

A 【解析】全等图形需要大小相等,形状相同,原图中只有A同时符合这两个条件,B、C、D都只是形状相同,但大小不相等, 故选A.

在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是(  )

A. 4cm B. 5cm C. 9cm D. 13cm

C 【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和, 即9-4=5,9+4=13. ∴第三边取值范围应该为:5<第三边长度<13, 故只有C选项符合条件. 故选C.

(2011•江津区)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.

(1)求证:Rt△ABE≌Rt△CBF;

(2)若∠CAE=30°,求∠ACF的度数.

(1)见解析;(2)60°. 【解析】 试题分析:(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF; (2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案. (1)证明:∵∠ABC=90°,...

如图,有一个直角△ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP= 时,才能使ΔABC≌ΔPQA.

10 【解析】 试题分析:要使△ABC≌△PQA,根据全等三角形的性质可得AP=CA,则说明当P运动到C时,利用直角三角形全等的判定HL可证△ABC≌△PQA. ∵AX⊥AC,∠C=90°, ∴∠C=∠PAQ=90°, 又∵AP=CB=5,PQ=AB, ∴△ABC≌△PQA. 点P运动到C点时,△ABC≌△PQA. ∵AX⊥AC,∠C=90°, ...

如图,将以A为直角顶点的等腰Rt△ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则sin∠A′BC′的值为_____,cos∠A′BC=________.

【解析】过A′作出A′D⊥BC′,垂足为D, 在等腰直角三角形A′B′C′中,则A′D是底边上的中线, ∴B′C′=2 A′D, ∵BC=B′C′,BD=BC+B′D, ∴A′B= , ∴ sin∠A′BC′=,cos∠A′BC=, 故答案为: , .

如图,在Rt△ABC中,∠C=90°,若sinA=,则cosB的是

A. B. C. D.

B 【解析】试题分析:在Rt△ABC中,∵∠C=90°, ∴∠A+∠B=90°, ∴cosB=sinA, ∵sinA=, ∴cosB=. 故选:B.

如图,将∠AOB放置在5×5的正方形网格中,则sin∠AOB的值是( )

A. B. C. D.

D. 【解析】 试题分析:在直角△OAC中,OC=2,AC=3,则OA===,则sin∠AOB===.故选D.

如图是经过轴对称变换后所得的图形,与原图形相比

A.形状没有改变,大小没有改变 B.形状没有改变,大小有改变

C.形状有改变,大小没有改变 D.形状有改变,大小有改变

A 【解析】 试题分析:∵轴对称变换不改变图形的形状与大小, ∴与原图形相比,形状没有改变,大小没有改变。 故选A。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网