题目内容

已知△ABC的三条边分别为a、b、c,关于x的一元二次方程(a+c)x2-2bx+a-c=0有两个相等的实数根,试判断△ABC的形状并证明.
考点:根的判别式,勾股定理的逆定理
专题:
分析:由跟的判别式△=(-2b)2-4(a+c)(a-c)=0,整理得出b2+c2=a2,由勾股定理逆定理得出△ABC的形状即可.
解答:解:∵关于x的一元二次方程(a+c)x2-2bx+a-c=0有两个相等的实数根,
∴△=(-2b)2-4(a+c)(a-c)=0,
整理得b2+c2=a2
∴△ABC是以a为斜边的直角三角形.
点评:此题考查一元二次方程根的判别式和勾股定理逆定理的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网