题目内容

14.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=40°,则∠CDA的度数是(  )
A.110°B.115°C.120°D.125°

分析 连接OD,如图,根据切线的性质得∠ODC=90°,利用互余得∠COD=50°,再利用等腰三角形的性质和三角形外角性质可得∠ODA=$\frac{1}{2}$∠COD=25°,然后计算∠ODC+∠ODA即可.

解答 解:连接OD,如图,
∵CD与⊙O相切于点D,
∴OD⊥CD,
∴∠ODC=90°,
∴∠COD=90°-∠C=90°-40°=50°,
∵OA=OD,
∴∠A=∠ODA,
而∠COD=∠A+∠ODA,
∴∠ODA=$\frac{1}{2}$∠COD=25°,
∴∠CDA=∠ODC+∠ODA=90°+25°=115°.
故选B.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网