题目内容

15.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为(  )
A.6cmB.(6-2$\sqrt{3}$)cmC.3cmD.(4$\sqrt{3}$-6)cm

分析 根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.

解答 解:∵AB=12cm,∠A=30°,
∴BC=$\frac{1}{2}$AB=$\frac{1}{2}$×12=6cm,
由勾股定理得,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{1{2}^{2}-{6}^{2}}$=6$\sqrt{3}$cm,
∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,
∴B′C′=BC=6cm,
∴AB′=AC-B′C′=6$\sqrt{3}$-6,
过点B′作B′D⊥AC交AB于D,
则B′D=$\frac{\sqrt{3}}{3}$AB′=$\frac{\sqrt{3}}{3}$×(6$\sqrt{3}$-6)=(6-2$\sqrt{3}$)cm.
故选B.

点评 本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网