题目内容
19.(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
分析 (1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;
(2)根据正方形的判定方法添加即可.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,![]()
∵∠OBC=∠OCB,
∴OB=OC,
∴AC=BD,
∴平行四边形ABCD是矩形;
(2)解:AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,
又∵AB=AD,
∴四边形ABCD是正方形.
或:∵四边形ABCD是矩形,
又∵AC⊥BD,
∴四边形ABCD是正方形.
点评 本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.
练习册系列答案
相关题目
9.代数式$\sqrt{6-x}$有意义时,实数x的取值范围是( )
| A. | x>6 | B. | x≤6 | C. | x<6 | D. | x≠6 |
10.
如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=110°,则∠B的度数是( )
| A. | 110° | B. | 70° | C. | 60° | D. | 55° |
4.
中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
根据所给信息,解答下列问题:
(1)m=70,n=0.2;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
频数频率分布表
| 成绩x(分) | 频数(人) | 频率 |
| 50≤x<60 | 10 | 0.05 |
| 60≤x<70 | 30 | 0.15 |
| 70≤x<80 | 40 | n |
| 80≤x<90 | m | 0.35 |
| 90≤x≤100 | 50 | 0.25 |
(1)m=70,n=0.2;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
11.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )
| A. | (4,$\frac{17}{6}$) | B. | (4,3) | C. | (5,$\frac{17}{6}$) | D. | (5,3) |