题目内容

18.如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?(  )
A.95B.100C.105D.110

分析 先由三角形的外角性质求出∠ABC=75°,再由梯形的性质得出∠A+∠ABC=180°,即可求出∠A的度数.

解答 解:∵∠AEG=∠ABC+∠GCB,
∴∠ABC=∠AEG-∠GCB=95°-20°=75°,
∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A=180°-75°=105°;
故选:C.

点评 本题考查了梯形的性质、平行线的性质、三角形的外角性质;熟练掌握梯形的性质,由三角形的外角性质求出∠ABC的度数是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网