ÌâÄ¿ÄÚÈÝ
17£®Èçͼ1£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬AC=5£¬BD=10£¬Æ½ÐÐËıßÐÎABCDµÄÃæ»ýΪ24£®½«¡÷CODÈÆµãD°´ÄæÊ±Õë·½ÏòÐýתµÃµ½¡÷C1O D1£¬Á¬½ÓAC1¡¢BD1£®£¨1£©ÇóÖ¤£º¡÷AOC1¡×¡÷BOD1£»
£¨2£©µ±¡÷CODÐýתÖÁOD1ÓëµãAÖØºÏʱ£¬Çó¡÷AOC1µÄÃæ»ý£®
£¨3£©Èçͼ3£¬Á¬½ÓDD1£®
¢ÙÔò¡÷BDD1µÄÃæ»ýµÄ×î´óֵΪ25£®£¨Ö±½ÓÌî¿Õ£©
¢Úµ±ÐýתÖÁµãC1ÓëµãBÖ®¼äµÄ¾àÀë×î´óʱ£¬Çó´ËʱBD1µÄ³¤£®
·ÖÎö £¨1£©¸ù¾ÝÁ½±ß³É±ÈÀý¼Ð½ÇÏàµÈµÄÁ½Èý½ÇÐÎÏàËÆ¼´¿ÉÖ¤Ã÷£»
£¨2£©Èçͼ2ÖУ¬×÷C1H¡ÍACÓÚH£®ÓÉ${S}_{¡÷{D}_{1}O{C}_{1}}$=$\frac{1}{4}$¡Á24=$\frac{1}{2}$¡ÁOD1¡ÁC1H£¬Çó³öC1H=$\frac{12}{5}$£¬¸ù¾Ý${S}_{¡÷AO{C}_{1}}$=$\frac{1}{2}$•OA•C1H¼ÆËã¼´¿É½â¾öÎÊÌ⣻
£¨3£©¢ÙÈçͼ3ÖУ¬µ±OD1¡ÍBDʱ£¬¡÷BDD1µÄÃæ»ý×î´ó£®×î´óÖµ=$\frac{1}{2}$•BD•OD1£»
¢ÚÈçͼ4ÖУ¬×÷D1H¡ÍBDÓÚH£®ÓÉ$\frac{1}{2}$•OC1•D1H=$\frac{1}{4}$¡Á24£¬ÇóµÃD1H=$\frac{24}{5}$£¬ÔÚRt¡÷OD1HÖУ¬OH=$\sqrt{O{{D}^{2}}_{1}-{D}_{1}{H}^{2}}$=$\frac{7}{5}$£¬ÍƳöBH=OB-OH=$\frac{18}{5}$£¬ÔÚRt¡÷BHD1ÖУ¬BD1=$\sqrt{{D}_{1}{H}^{2}+B{H}^{2}}$=6£®
½â´ð £¨1£©Ö¤Ã÷£ºÈçͼ1ÖУ¬![]()
¡ß¡ÏCOC1=¡ÏDOD1£¬
¡à¡ÏAOC1=¡ÏBOD1£¬
¡ßËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬
¡àOA=OC=OC1£¬OB=OD=OD1£¬
¡à$\frac{O{C}_{1}}{O{D}_{1}}$=$\frac{OA}{OB}$£¬
¡à¡÷AOC1¡×¡÷BOD1£»
£¨2£©½â£ºÈçͼ2ÖУ¬×÷C1H¡ÍACÓÚH£®![]()
¡ß${S}_{¡÷{D}_{1}O{C}_{1}}$=$\frac{1}{4}$¡Á24=$\frac{1}{2}$¡ÁOD1¡ÁC1H£¬
¡àC1H=$\frac{12}{5}$£¬
¡à${S}_{¡÷AO{C}_{1}}$=$\frac{1}{2}$•OA•C1H=$\frac{1}{2}$¡Á$\frac{5}{2}$¡Á$\frac{12}{5}$=3£®
£¨3£©¢ÙÈçͼ3ÖУ¬µ±OD1¡ÍBDʱ£¬¡÷BDD1µÄÃæ»ý×î´ó£®×î´óÖµ=$\frac{1}{2}$•BD•OD1=$\frac{1}{2}$¡Á10¡Á5=25£®![]()
¹Ê´ð°¸Îª25£®
¢ÚÈçͼ4ÖУ¬×÷D1H¡ÍBDÓÚH£®![]()
¡ß$\frac{1}{2}$•OC1•D1H=$\frac{1}{4}$¡Á24£¬
¡àD1H=$\frac{24}{5}$£¬
ÔÚRt¡÷OD1HÖУ¬OH=$\sqrt{O{{D}^{2}}_{1}-{D}_{1}{H}^{2}}$=$\frac{7}{5}$£¬
¡àBH=OB-OH=$\frac{18}{5}$£¬
ÔÚRt¡÷BHD1ÖУ¬BD1=$\sqrt{{D}_{1}{H}^{2}+B{H}^{2}}$=6£®
µãÆÀ ±¾Ì⿼²éÏàËÆÈý½ÇÐÎ×ÛºÏÌ⡢ƽÐÐËıßÐεÄÐÔÖÊ¡¢½âÖ±½ÇÈý½ÇÐΡ¢¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÌí¼Ó³£Óø¨ÖúÏߣ¬¹¹ÔìÖ±½ÇÈý½ÇÐνâ¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | 6 | B£® | 12 | C£® | ¡À12 | D£® | ¡À6 |
| A£® | 2x3-1 | B£® | 1-x2 | C£® | x2+1 | D£® | -x2-1 |
| A£® | 38.4¡Á104 | B£® | 3.84¡Á105 | C£® | 3.84¡Á106 | D£® | 3.84¡Á104 |