题目内容

5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当-1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是(  )
A.①②④B.①③C.①②③D.①③④

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:∵函数图象的对称轴为:x=-$\frac{b}{2a}$=$\frac{-1+3}{2}$=1,
∴b=-2a,即2a+b=0,①正确;
由图象可知,当-1<x<3时,y<0,②错误;
由图象可知,当x=1时,y=0,
∴a-b+c=0,
∵b=-2a,
∴3a+c=0,③正确;
∵抛物线的对称轴为x=1,开口方向向上,
∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2
故④错误;
故选:B.

点评 本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网