题目内容
20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是a>b.分析 根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.
解答 解:∵一次函数y=-2x+1中k=-2,
∴该函数中y随着x的增大而减小,
∵1<2,
∴a>b.
故答案为:a>b.
点评 本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.
练习册系列答案
相关题目
8.不等式组$\left\{\begin{array}{l}2x<6\\ x+1≥-4\end{array}\right.$的解集是( )
| A. | -5≤x<3 | B. | -5<x≤3 | C. | x≥-5 | D. | x<3 |
15.下面的数中,与-6的和为0的数是( )
| A. | 6 | B. | -6 | C. | $\frac{1}{6}$ | D. | -$\frac{1}{6}$ |
5.对于实数a、b,定义一种新运算“?”为:a?b=$\frac{1}{{a-{b^2}}}$,这里等式右边是实数运算.例如:1?3=$\frac{1}{{1-{3^2}}}=-\frac{1}{8}$.则方程x?(-2)=$\frac{2}{x-4}$-1的解是( )
| A. | x=4 | B. | x=5 | C. | x=6 | D. | x=7 |
17.若x使(x-1)2=4成立,则x的值是( )
| A. | 3 | B. | -1 | C. | 3或-1 | D. | ±2 |