题目内容
13.分析 先由旋转的性质,得出△ABF≌△CBE进而得出BE=BF,再由正方形的得出∠EBF=∠CBE+∠CBF=90°,判断出△BEF为等腰Rt△BEF,再判断出△BEF为等腰Rt△BEF,用勾股定理即可得出结论.
解答 解:由旋转的性质可得:△ABF≌△CBE,
所以∠ABF=∠CBE,BE=BF,
因为正方形ABCD
所以∠ABC=∠ABF+∠CBF=90°,
所以∠EBF=∠CBE+∠CBF=90°,
所以△BEF为等腰Rt△BEF
根据勾股定理:EF=4$\sqrt{2}$,
因为∠BEC=135°,∠BEF=45°,
所以∠CEF=90°.
所以△BEF为等腰Rt△BEF
根据勾股定理:CF=6.
点评 此题是旋转的性质,主要考查了正方形性质,勾股定理解本题的关键是判断出△BEF,△BEF为都等腰Rt△BEF.
练习册系列答案
相关题目