题目内容

某淘宝小店计划销售一种成本为每件60元的保暖内衣,该内衣网络营销统计数据表明:如果按每件70元销售,一月能售出500件,若销售单价每涨1元,每月销售量就减少10件.设销售价为每件x元(x≥70),一月的销售量为y件.
(1)写出y与x的函数关系式(标明x的取值范围);
(2)设一月的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在网店对保暖内衣成本投入不超过15000元的情况下,使得一月销售利润达到8000元,销售单价应定为多少?
考点:二次函数的应用
专题:
分析:(1)根据题意得出:y=500+10(70-x),进而得出y与x的函数关系式;
(2)利用每件利润×销量=总利润,进而得出答案;
(3)将w=8000代入求出即可.
解答:解:(1)根据题意得出:y=500+10(70-x)=1200-10x(70≤x≤120);

(2)根据题意得出:w=(x-60)(1200-10x)
 即w=-10x2+1800x-7200
当70≤x≤90时,利润随着单价的增大而增大.

(3)当y=8000时,-10x2+1800x-7200=8000
解得x=80或x=100,
当x=100时,成本为12000元,不超过15000元,
所以销售单价应定为100元.
点评:此题主要考查了二次函数的应用,根据题意得出w与x的函数关系式是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网