题目内容

14.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.

分析 由AB与AC垂直,CD与DE垂直,B与DE垂直,利用同角的余角相等得出∠DCA=∠EAB,进而得出的一对角相等,一对直角相等,以及AB=AC,利用AAS即可得证.

解答 证明:∵AB⊥AC,CD⊥DE,BE⊥DE,
∴∠BAC=∠D=∠E=90°,
∴∠CAD+∠BAE=90°,∠DCA+∠CAD=90°,
∴∠DCA=∠EAB;
在△ADC和△BEA中,
$\left\{\begin{array}{l}{∠D=∠E=90°}\\{∠DCA=∠EAB}\\{AC=BA}\end{array}\right.$,
∴△ADC≌△BEA(AAS).

点评 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网