题目内容

19.如图,直线l与⊙O交于C,D两点,且与半径OA垂直,垂足为H,∠ODC=30°,在OD的延长线上取一点B,使得AD=BD,若⊙O的半径为2,则图中阴影部分的面积为2$\sqrt{3}$-$\frac{2}{3}$π(结果保留π)

分析 求出△OAD是等边三角形,推出∠OAD=∠ODA=60°,求出∠DAB=∠B=30°,求出∠OAB=90°,求出△OAB和扇形OAD的面积,即可求出答案.

解答 解:直线AB与⊙O的位置关系是相切,
理由是:∵AO⊥CD,
∴∠OAD=90°,
∵∠ODC=30°,
∴∠DOA=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴∠OAD=∠ODA=60°,
∵AD=BD,
∴∠DAB=∠B,
∵∠ODA=∠B+∠DAB,
∴∠DAB=∠B=30°,
∴∠OAB=30°+60°=90°,
∵∠B=30°,∠OAB=90°,OA=2,
∴OB=2OA=4,由勾股定理得:AB=2$\sqrt{3}$,
∴阴影部分的面积S=S△OAB-S扇形OAD=$\frac{1}{2}$×2$\sqrt{3}$×2-$\frac{60π×{2}^{2}}{360}$=2$\sqrt{3}$-$\frac{2}{3}$π.
故答案为:2$\sqrt{3}$-$\frac{2}{3}$π.

点评 本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角性质,扇形的面积,三角形的面积等知识点的应用,主要考查学生综合运用机密性推理和计算的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网