题目内容
3.若$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,则p+p2+p3的值为1.分析 根据$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,三式相乘得到$\frac{x+y-z}{x+y+z}$=p3,两式相乘得到$\frac{z+x-y}{x+y+z}$=p2,再把$\frac{y+z-x}{x+y+z}$=p代入p+p2+p3求值即可.
解答 解:∵$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,
∴$\frac{(y+z-x)(z+x-y)(x+y-z)}{(x+y+z)(y+z-x)(z+x-y)}$=p3,
$\frac{x+y-z}{x+y+z}$=p3,
$\frac{(y+z-x)(z+x-y)}{(x+y+z)(y+z-x)}$=p2,
$\frac{z+x-y}{x+y+z}$=p2,
∴p+p2+p3
=$\frac{y+z-x}{x+y+z}$+$\frac{z+x-y}{x+y+z}$+$\frac{x+y-z}{x+y+z}$
=$\frac{y+z-x+z+x-y+x+y-z}{x+y+z}$
=$\frac{x+y+z}{x+y+z}$
=1.
故答案为:1.
点评 考查了比例的性质,关键是得到p+p2+p3=$\frac{y+z-x}{x+y+z}$+$\frac{z+x-y}{x+y+z}$+$\frac{x+y-z}{x+y+z}$.
练习册系列答案
相关题目
14.
如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )
| A. | 主视图是轴对称图形 | B. | 左视图是轴对称图形 | ||
| C. | 俯视图是轴对称图形 | D. | 三个视图都不是轴对称图形 |