题目内容

3.若$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,则p+p2+p3的值为1.

分析 根据$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,三式相乘得到$\frac{x+y-z}{x+y+z}$=p3,两式相乘得到$\frac{z+x-y}{x+y+z}$=p2,再把$\frac{y+z-x}{x+y+z}$=p代入p+p2+p3求值即可.

解答 解:∵$\frac{y+z-x}{x+y+z}$=$\frac{z+x-y}{y+z-x}$=$\frac{x+y-z}{z+x-y}$=p,
∴$\frac{(y+z-x)(z+x-y)(x+y-z)}{(x+y+z)(y+z-x)(z+x-y)}$=p3
$\frac{x+y-z}{x+y+z}$=p3
$\frac{(y+z-x)(z+x-y)}{(x+y+z)(y+z-x)}$=p2
$\frac{z+x-y}{x+y+z}$=p2
∴p+p2+p3
=$\frac{y+z-x}{x+y+z}$+$\frac{z+x-y}{x+y+z}$+$\frac{x+y-z}{x+y+z}$
=$\frac{y+z-x+z+x-y+x+y-z}{x+y+z}$
=$\frac{x+y+z}{x+y+z}$
=1.
故答案为:1.

点评 考查了比例的性质,关键是得到p+p2+p3=$\frac{y+z-x}{x+y+z}$+$\frac{z+x-y}{x+y+z}$+$\frac{x+y-z}{x+y+z}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网