题目内容

6.如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:BC=DE.

分析 根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.

解答 证明:∵AB∥EC,
∴∠BAC=∠DCE,
在△ABC和△CDE中,
$\left\{\begin{array}{l}{∠BAC=∠DCE}\\{∠B=∠D}\\{AB=CD}\end{array}\right.$,
∴△ABC≌△CDE,
∴BC=DE.

点评 本题考查了全等三角形的判定和性质,全等三角形角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网