题目内容

在△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.

(1)已知c=8,∠A=60°,求∠B,a,b;

(2)已知a=3,∠A=45°,求∠B,b,c.

(1)∠B=30°,a=12,b=4;(2)∠B=45°,b=3,c=6. 【解析】试题分析:(1)根据直角三角形两锐角互余求得∠B的度数,再根据30度角所对直角边等于斜边一半求得b,再根据勾股定理求得a即可; (2)先根据直角三角形两锐角互余求得∠B=45°,从而得到b=a,再利用勾股定理即可求得c. 试题解析:(1)∵∠C=90°,∠A=60°,∴∠B=90°-∠A=30°,...
练习册系列答案
相关题目

如果t>0,那么a+t与a的大小关系是( )

A、a+t>a B、a+t<a C、a+t≥a D、不能确定

A 【解析】 试题分析:根据不等式的基本性质即可得到结果. t>0, ∴a+t>a, 故选A.

如图所示的四个图形中,从几何图形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.

图(2),仅它不是轴对称图形 【解析】试题分析:观察图形发现(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形,由此即可得出结论. 试题解析:【解析】 (1)(3)(4)都是轴对称图形,而(2)不是轴对称图形.故从几何图形变换的角度考虑,图(2)与其它三个不同.

解方程:

x=-2 【解析】试题分析:按照解分式方程的步骤解方程即可. 试题解析:去分母,得 去括号,得 移项,得 合并同类项,得 检验:当时, 是原方程的解.

关于x的方程无解,则m的值为(  )

A. ﹣5 B. ﹣8 C. ﹣2 D. 5

A 【解析】试题分析:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A.

如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′=________.

【解析】过A′作出A′D⊥BC′,垂足为D, 在等腰直角三角形A′B′C′中,则A′D是底边上的中线, ∴B′C′=2 A′D, ∵BC=B′C′, ∴BD=BC+B′D=3 A′D, ∴ tan∠A′BC′=, 故答案为: .

-9a2b+3ac2-6abc各项的公因式是_______;

-3a 【解析】根据提公因式法因式分解,可知其是首项为“﹣”的多项式,因此可知其公因式为-3a. 故答案为:-3a.

如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )

A. 30° B. 60° C. 90° D. 120°

C 【解析】试题分析:由题意得,剩下的三角形是直角三角形, 所以,∠1+∠2=90°. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网