题目内容

16.解方程组
(1)$\left\{\begin{array}{l}y=2x-5\\ 7x-3y=20\end{array}\right.$
(2)$\left\{\begin{array}{l}\frac{x}{2}-\frac{y+1}{3}=1\\ 3x+2y=10\end{array}\right.$
(3)$\left\{\begin{array}{l}\frac{x+1}{3}=2y\\ 2({x+1})-y=11\end{array}\right.$
(4)$\left\{\begin{array}{l}19x+18y=17\\ 17x+16y=15\end{array}\right.$.

分析 (1•)方程组利用代入消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组整理后,利用代入消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{y=2x-5①}\\{7x-3y=20②}\end{array}\right.$,
把①代入②得:7x-6x+15=20,
解得:x=5,
把x=5代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=5}\end{array}\right.$;

(2)方程组整理得:$\left\{\begin{array}{l}{3x-2y=8①}\\{3x+2y=10②}\end{array}\right.$,
①+②得:6x=18,
解得:x=3,
①-②得:-4y=-2,
解得:y=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{1}{2}}\end{array}\right.$;

(3)$\left\{\begin{array}{l}{\frac{x+1}{3}=2y①}\\{2(x+1)-y=11②}\end{array}\right.$,
由①得:x+1=6y③,
把③代入②得:12y-y=11,
解得:y=1,
把y=1代入③得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$;

(4)$\left\{\begin{array}{l}{19x+18y=17①}\\{17x+16y=15②}\end{array}\right.$,
①×17-②×19得:2y=4,
解得:y=2,
把y=2代入①得:x=-1,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网