题目内容

如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是(  )
A、4
3
B、3
3
C、2
3
D、
3
考点:菱形的性质
专题:
分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积.
解答:解:∵四边形ABCD是菱形,
∴BC=CD,∠B=∠D=60°,
∵AE⊥BC,AF⊥CD,
∴BC×AE=CD×AF,∠BAE=∠DAF=30°,
∴AE=AF,
∵∠B=60°,
∴∠BAD=120°,
∴∠EAF=120°-30°-30°=60°,
∴△AEF是等边三角形,
∴AE=EF,∠AEF=60°,
∵AB=4,
∴AE=2
3

∴EF=AE=2
3

过A作AM⊥EF,
∴AM=AE•sin60°=3,
∴△AEF的面积是:
1
2
EF•AM=
1
2
×2
3
×3=3
3

故选:B.
点评:此题考查菱形的性质,等边三角形的判定及三角函数的运用.关键是掌握菱形的性质,证明△AEF是等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网