题目内容

7.若a+b+c-2$\sqrt{a}$-2$\sqrt{b-1}$-2$\sqrt{c-2}$=0,求a+b+c的值.

分析 首先分组,利用完全平方公式分组化为完全平方式,进一步利用非负数的性质求得a、b、c的数值,代入求得答案即可.

解答 解:∵a+b+c-2$\sqrt{a}$-2$\sqrt{b-1}$-2$\sqrt{c-2}$=0,
∴(a-2$\sqrt{a}$+1)+(b-1-2$\sqrt{b-1}$+1)+(c-2-2$\sqrt{c-2}$+1)=0,
∴($\sqrt{a}$-1)2+($\sqrt{b-1}$-1)2+($\sqrt{c-2}$-1)2=0,
∴$\sqrt{a}$-1=0,$\sqrt{b-1}$-1=0,$\sqrt{c-2}$-1=0,
解得:a=1,b=2,c=3,
∴a+b+c=6.

点评 此题考查配方法的运用,非负数的性质,掌握分组的方法和完全平方公式是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网